计算机科学
减法
对比度(视觉)
人工智能
生成对抗网络
生成语法
对抗制
图像质量
计算机视觉
数字减影血管造影
图像(数学)
血管造影
放射科
医学
数学
算术
作者
Sebastian Johannes Mueller,Eric Einspänner,Stefan Klebingat,Seraphine Zubel,Roland Schwab,Erelle Fuchs,Elie Diamandis,Eya Khadhraoui,Daniel Behme
标识
DOI:10.1186/s12880-024-01454-7
摘要
Subtraction angiographies are calculated using a native and a contrast-enhanced 3D angiography images. This minimizes both bone and metal artifacts and results in a pure image of the vessels. However, carrying out the examination twice means double the radiation dose for the patient. With the help of generative AI, it could be possible to simulate subtraction angiographies from contrast-enhanced 3D angiographies and thus reduce the need for another dose of radiation without a cutback in quality. We implemented this concept by using conditional generative adversarial networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI