Sustaining 500,000 Folding Cycles through Bioinspired Stress Dispersion Design in Sodium‐Ion Batteries

折叠(DSP实现) 电池(电) 材料科学 制作 压力(语言学) 纳米技术 铰链 机械工程 工程类 语言学 物理 哲学 医学 功率(物理) 替代医学 病理 量子力学
作者
Shu Pu,Guangtao Zan,Hongmin Zhou,Kangze Dong,Xiaoge Mao,Qingsheng Wu,Tong Wu
出处
期刊:Angewandte Chemie [Wiley]
被引量:5
标识
DOI:10.1002/anie.202417589
摘要

Developing super-foldable electronic materials and devices presents a significant challenge, as intrinsic conductive materials are unable to achieve numerous true-folding operations (super-foldable) due to limitations from short-range forces of chemical bonds. Consequently, super-foldable batteries remain unexplored. This work focused on sodium-ion batteries as a breakthrough point to advance super-foldable devices. By employing a "2+1" bioinspired strategy, we stepwise designed and assembled super-foldable components, from substrates to electrodes, and to ultimately device. This bioinspired approach completely disperses folding stress and thus prevents the breakage of chemical bonds, enabling the successful fabrication of the first super-foldable ion battery. This battery can withstand true-folding at any angle, in any direction, and for an unprecedented number of cycles-far outperforming current foldable phones with hinge structures. Remarkably, after 500,000 true-folding cycles, the battery's microstructure remains intact with no significant degradation of electrochemical performance. Real-time dynamic folding observations reveal an M-shaped folding structure within the bioinspired materials, which effectively disperses stress via bulged layers, dispersed arcs, and slidable microgrooves that work together across different directions and dimensions to achieve super-foldability. Mechanical simulations vividly verify this principle. This work represents a breakthrough in super-foldable devices, offering valuable insights and promoting practical application for future super-foldable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣笛应助和谐的阁采纳,获得70
刚刚
小马甲应助隐形的念芹采纳,获得10
1秒前
1秒前
3秒前
善学以致用应助努力采纳,获得10
4秒前
情怀应助111采纳,获得10
4秒前
NexusExplorer应助大力的迎松采纳,获得10
4秒前
瓜瓜完成签到,获得积分10
4秒前
yuchen发布了新的文献求助10
5秒前
传奇3应助tt采纳,获得10
6秒前
华仔应助欧气青年采纳,获得10
7秒前
8秒前
8秒前
英俊的铭应助萄哥布鸽采纳,获得10
8秒前
斯文败类应助freyr采纳,获得10
9秒前
汤泽琪发布了新的文献求助10
10秒前
10秒前
小二郎应助yuchen采纳,获得10
11秒前
zhao发布了新的文献求助10
13秒前
14秒前
伟川周完成签到 ,获得积分10
15秒前
大力的迎松完成签到,获得积分20
15秒前
yujian完成签到,获得积分10
15秒前
16秒前
爆米花应助Mark采纳,获得10
17秒前
情怀应助maozhehai29999采纳,获得10
18秒前
19秒前
yujian发布了新的文献求助10
19秒前
19秒前
寒霜扬名完成签到,获得积分10
21秒前
其亚关注了科研通微信公众号
22秒前
22秒前
23秒前
小马甲应助wang采纳,获得10
23秒前
25秒前
26秒前
乐乐应助lucky采纳,获得10
26秒前
明理的曼凡应助HYT采纳,获得10
27秒前
努力发布了新的文献求助10
28秒前
liqian发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993793
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265507
捐赠科研通 3274273
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712