Application of the FlowNet model for history matching and production optimization in water alternating gas enhanced oil recovery

物理 生产(经济) 机械 热力学 宏观经济学 经济
作者
Yunfeng Xu,Wei Liu,Hui Zhao,Xiang Rao,B. Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0221021
摘要

Enhanced oil recovery (EOR) strategies, particularly CO2 flooding, play a crucial role in optimizing oil reservoir exploitation while addressing carbon sequestration. Despite their effectiveness, the application of these techniques is often hindered by complex reservoir dynamics and the computational intensity of traditional simulation models. This study introduces a novel approach utilizing the FlowNet model, which combines data-driven analytics and physics-based modeling, aimed at expediting history matching and production optimization processes. The FlowNet model simplifies the representation of reservoirs by using virtual well points along flow paths and employs a non-linear solver for quick resolution of flow equations. Our method significantly enhances the efficiency of history matching by reducing computational overheads and leveraging streamlined network structures, thereby facilitating faster and more accurate production forecasts. We implement the model in several case studies involving CO2 and water alternating gas flooding, which demonstrate an 11% increase in the economic net present value compared to traditional methods. These findings highlight the potential of integrating data-driven techniques with physical modeling to improve EOR performance predictions and optimize production strategies, ultimately promoting more sustainable and economically viable oil recovery practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助jxcandice采纳,获得10
1秒前
1秒前
Owen应助雾见春采纳,获得10
2秒前
aiming发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
无辜之卉发布了新的文献求助10
4秒前
yty发布了新的文献求助10
4秒前
烟花应助卡夫卡没在海边采纳,获得10
5秒前
456发布了新的文献求助10
6秒前
传奇3应助温暖以蓝采纳,获得10
6秒前
辛勤的仰完成签到,获得积分10
6秒前
如意新晴完成签到,获得积分10
6秒前
6秒前
zrk完成签到,获得积分20
7秒前
7秒前
szmsnail发布了新的文献求助20
7秒前
Ava应助Monik采纳,获得10
7秒前
打打应助zhui采纳,获得10
8秒前
8秒前
中华有为发布了新的文献求助10
9秒前
yana完成签到,获得积分10
9秒前
科目三应助卡卡采纳,获得10
9秒前
10秒前
XHZGG完成签到 ,获得积分10
11秒前
aiming完成签到,获得积分10
12秒前
shengChen发布了新的文献求助10
12秒前
热心的皮完成签到 ,获得积分10
12秒前
hhhhhhan616完成签到,获得积分10
12秒前
尉迟明风完成签到 ,获得积分10
12秒前
珲雯完成签到,获得积分10
12秒前
xinxin发布了新的文献求助10
13秒前
朱孝培完成签到,获得积分10
13秒前
247793325发布了新的文献求助20
13秒前
加油呀完成签到,获得积分10
13秒前
聪明可爱小绘理完成签到,获得积分10
13秒前
36456657应助啱啱采纳,获得10
13秒前
桐桐应助韦威风采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794