亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multicenter validation study for automated left ventricular ejection fraction assessment using a handheld ultrasound with artificial intelligence

射血分数 医学 组内相关 超声波 置信区间 心脏病学 内科学 核医学 人工智能 放射科 计算机科学 心力衰竭 临床心理学 心理测量学
作者
Nobuyuki Kagiyama,Yukio Abe,Kenya Kusunose,Nahoko Kato,Takeshi Kaneko,Azusa Murata,Ota M,Kentaro Shibayama,Masaki Izumo,Hitoshi Watanabe
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-65557-5
摘要

Abstract We sought to validate the ability of a novel handheld ultrasound device with an artificial intelligence program (AI-POCUS) that automatically assesses left ventricular ejection fraction (LVEF). AI-POCUS was used to prospectively scan 200 patients in two Japanese hospitals. Automatic LVEF by AI-POCUS was compared to the standard biplane disk method using high-end ultrasound machines. After excluding 18 patients due to infeasible images for AI-POCUS, 182 patients (63 ± 15 years old, 21% female) were analyzed. The intraclass correlation coefficient (ICC) between the LVEF by AI-POCUS and the standard methods was good (0.81, p < 0.001) without clinically meaningful systematic bias (mean bias -1.5%, p = 0.008, limits of agreement ± 15.0%). Reduced LVEF < 50% was detected with a sensitivity of 85% (95% confidence interval 76%–91%) and specificity of 81% (71%–89%). Although the correlations between LV volumes by standard-echo and those by AI-POCUS were good (ICC > 0.80), AI-POCUS tended to underestimate LV volumes for larger LV (overall bias 42.1 mL for end-diastolic volume). These trends were mitigated with a newer version of the software tuned using increased data involving larger LVs, showing similar correlations (ICC > 0.85). In this real-world multicenter study, AI-POCUS showed accurate LVEF assessment, but careful attention might be necessary for volume assessment. The newer version, trained with larger and more heterogeneous data, demonstrated improved performance, underscoring the importance of big data accumulation in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
cccxq发布了新的文献求助10
12秒前
仙人不指路完成签到 ,获得积分10
16秒前
CodeCraft应助cccxq采纳,获得10
16秒前
FashionBoy应助橱窗采纳,获得10
18秒前
23秒前
dax大雄完成签到 ,获得积分10
26秒前
27秒前
科研小新发布了新的文献求助10
28秒前
橱窗完成签到,获得积分10
33秒前
33秒前
绿柏完成签到,获得积分10
33秒前
33秒前
Zq完成签到 ,获得积分10
34秒前
Petrichor完成签到,获得积分10
38秒前
Amber发布了新的文献求助10
39秒前
47秒前
赵赵发布了新的文献求助20
52秒前
52秒前
研友_VZG7GZ应助小玉采纳,获得10
54秒前
NexusExplorer应助小玉采纳,获得10
54秒前
领导范儿应助小玉采纳,获得10
54秒前
小圆圈发布了新的文献求助10
54秒前
JamesPei应助小玉采纳,获得10
54秒前
共享精神应助小玉采纳,获得10
54秒前
善学以致用应助小玉采纳,获得10
54秒前
华仔应助小玉采纳,获得10
54秒前
李健应助小玉采纳,获得10
54秒前
桐桐应助小玉采纳,获得10
54秒前
脑洞疼应助小玉采纳,获得10
55秒前
CQ发布了新的文献求助10
57秒前
搜集达人应助小玉采纳,获得10
1分钟前
丘比特应助小玉采纳,获得10
1分钟前
希望天下0贩的0应助小玉采纳,获得10
1分钟前
Lucas应助小玉采纳,获得10
1分钟前
田様应助小玉采纳,获得10
1分钟前
丘比特应助小玉采纳,获得10
1分钟前
隐形曼青应助小玉采纳,获得10
1分钟前
脑洞疼应助小玉采纳,获得10
1分钟前
香蕉觅云应助小玉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332