射血分数
医学
组内相关
超声波
置信区间
心脏病学
内科学
核医学
人工智能
放射科
计算机科学
心力衰竭
临床心理学
心理测量学
作者
Nobuyuki Kagiyama,Yukio Abe,Kenya Kusunose,Nahoko Kato,Takeshi Kaneko,Azusa Murata,Ota M,Kentaro Shibayama,Masaki Izumo,Hitoshi Watanabe
标识
DOI:10.1038/s41598-024-65557-5
摘要
Abstract We sought to validate the ability of a novel handheld ultrasound device with an artificial intelligence program (AI-POCUS) that automatically assesses left ventricular ejection fraction (LVEF). AI-POCUS was used to prospectively scan 200 patients in two Japanese hospitals. Automatic LVEF by AI-POCUS was compared to the standard biplane disk method using high-end ultrasound machines. After excluding 18 patients due to infeasible images for AI-POCUS, 182 patients (63 ± 15 years old, 21% female) were analyzed. The intraclass correlation coefficient (ICC) between the LVEF by AI-POCUS and the standard methods was good (0.81, p < 0.001) without clinically meaningful systematic bias (mean bias -1.5%, p = 0.008, limits of agreement ± 15.0%). Reduced LVEF < 50% was detected with a sensitivity of 85% (95% confidence interval 76%–91%) and specificity of 81% (71%–89%). Although the correlations between LV volumes by standard-echo and those by AI-POCUS were good (ICC > 0.80), AI-POCUS tended to underestimate LV volumes for larger LV (overall bias 42.1 mL for end-diastolic volume). These trends were mitigated with a newer version of the software tuned using increased data involving larger LVs, showing similar correlations (ICC > 0.85). In this real-world multicenter study, AI-POCUS showed accurate LVEF assessment, but careful attention might be necessary for volume assessment. The newer version, trained with larger and more heterogeneous data, demonstrated improved performance, underscoring the importance of big data accumulation in the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI