Multicenter validation study for automated left ventricular ejection fraction assessment using a handheld ultrasound with artificial intelligence

射血分数 医学 组内相关 超声波 置信区间 心脏病学 内科学 核医学 人工智能 放射科 计算机科学 心力衰竭 临床心理学 心理测量学
作者
Nobuyuki Kagiyama,Yukio Abe,Kenya Kusunose,Nahoko Kato,Takeshi Kaneko,Azusa Murata,Ota M,Kentaro Shibayama,Masaki Izumo,Hitoshi Watanabe
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-65557-5
摘要

Abstract We sought to validate the ability of a novel handheld ultrasound device with an artificial intelligence program (AI-POCUS) that automatically assesses left ventricular ejection fraction (LVEF). AI-POCUS was used to prospectively scan 200 patients in two Japanese hospitals. Automatic LVEF by AI-POCUS was compared to the standard biplane disk method using high-end ultrasound machines. After excluding 18 patients due to infeasible images for AI-POCUS, 182 patients (63 ± 15 years old, 21% female) were analyzed. The intraclass correlation coefficient (ICC) between the LVEF by AI-POCUS and the standard methods was good (0.81, p < 0.001) without clinically meaningful systematic bias (mean bias -1.5%, p = 0.008, limits of agreement ± 15.0%). Reduced LVEF < 50% was detected with a sensitivity of 85% (95% confidence interval 76%–91%) and specificity of 81% (71%–89%). Although the correlations between LV volumes by standard-echo and those by AI-POCUS were good (ICC > 0.80), AI-POCUS tended to underestimate LV volumes for larger LV (overall bias 42.1 mL for end-diastolic volume). These trends were mitigated with a newer version of the software tuned using increased data involving larger LVs, showing similar correlations (ICC > 0.85). In this real-world multicenter study, AI-POCUS showed accurate LVEF assessment, but careful attention might be necessary for volume assessment. The newer version, trained with larger and more heterogeneous data, demonstrated improved performance, underscoring the importance of big data accumulation in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanglin123完成签到,获得积分10
刚刚
Owen应助王哪跑12采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
隐形曼青应助吴志新采纳,获得10
1秒前
1秒前
1秒前
1秒前
清爽千亦关注了科研通微信公众号
1秒前
冷茗完成签到,获得积分10
1秒前
临风浩歌完成签到,获得积分10
1秒前
忐忑的雪糕完成签到 ,获得积分0
2秒前
2秒前
心旷神怡完成签到,获得积分10
2秒前
生动从寒完成签到,获得积分10
3秒前
大方小白发布了新的文献求助10
3秒前
领导范儿应助李玲玲采纳,获得10
4秒前
4秒前
大胆隶完成签到,获得积分10
5秒前
5秒前
yyyhhh发布了新的文献求助10
6秒前
6秒前
Shauna发布了新的文献求助10
6秒前
脑洞疼应助浮浮世世采纳,获得10
7秒前
彭于晏应助查查采纳,获得10
7秒前
yaowei关注了科研通微信公众号
7秒前
Zymiao完成签到,获得积分20
7秒前
8秒前
9秒前
9秒前
许子健发布了新的文献求助10
9秒前
10秒前
孤独依波发布了新的文献求助20
10秒前
10秒前
觅夏发布了新的文献求助10
11秒前
爆米花应助梓榆采纳,获得10
11秒前
Lucas应助浮浮世世采纳,获得10
13秒前
baobao发布了新的文献求助10
13秒前
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646