Multicenter validation study for automated left ventricular ejection fraction assessment using a handheld ultrasound with artificial intelligence

射血分数 医学 组内相关 超声波 置信区间 心脏病学 内科学 核医学 人工智能 放射科 计算机科学 心力衰竭 临床心理学 心理测量学
作者
Nobuyuki Kagiyama,Yukio Abe,Kenya Kusunose,Nahoko Kato,Takeshi Kaneko,Azusa Murata,Ota M,Kentaro Shibayama,Masaki Izumo,Hitoshi Watanabe
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-65557-5
摘要

Abstract We sought to validate the ability of a novel handheld ultrasound device with an artificial intelligence program (AI-POCUS) that automatically assesses left ventricular ejection fraction (LVEF). AI-POCUS was used to prospectively scan 200 patients in two Japanese hospitals. Automatic LVEF by AI-POCUS was compared to the standard biplane disk method using high-end ultrasound machines. After excluding 18 patients due to infeasible images for AI-POCUS, 182 patients (63 ± 15 years old, 21% female) were analyzed. The intraclass correlation coefficient (ICC) between the LVEF by AI-POCUS and the standard methods was good (0.81, p < 0.001) without clinically meaningful systematic bias (mean bias -1.5%, p = 0.008, limits of agreement ± 15.0%). Reduced LVEF < 50% was detected with a sensitivity of 85% (95% confidence interval 76%–91%) and specificity of 81% (71%–89%). Although the correlations between LV volumes by standard-echo and those by AI-POCUS were good (ICC > 0.80), AI-POCUS tended to underestimate LV volumes for larger LV (overall bias 42.1 mL for end-diastolic volume). These trends were mitigated with a newer version of the software tuned using increased data involving larger LVs, showing similar correlations (ICC > 0.85). In this real-world multicenter study, AI-POCUS showed accurate LVEF assessment, but careful attention might be necessary for volume assessment. The newer version, trained with larger and more heterogeneous data, demonstrated improved performance, underscoring the importance of big data accumulation in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻的飞风完成签到,获得积分10
刚刚
李健应助一期一会采纳,获得10
刚刚
李健应助wise111采纳,获得10
刚刚
粥粥完成签到 ,获得积分10
2秒前
2秒前
爆米花应助daqisong采纳,获得10
2秒前
元2333发布了新的文献求助20
2秒前
2秒前
爆米花应助小椰采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
烟花应助vv采纳,获得10
3秒前
4秒前
4秒前
小蘑菇应助Gnor采纳,获得10
4秒前
星辰大海应助机灵的南蕾采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
qqxin完成签到,获得积分20
4秒前
4秒前
池寒1完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
xy完成签到 ,获得积分10
6秒前
AL发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
qqxin发布了新的文献求助10
7秒前
Ava应助why911采纳,获得10
8秒前
lhxing发布了新的文献求助20
8秒前
sule发布了新的文献求助10
9秒前
所所应助wenwen采纳,获得10
9秒前
万能图书馆应助王博雅采纳,获得10
9秒前
9秒前
李健应助lll采纳,获得10
10秒前
慕青应助Lilysound采纳,获得10
10秒前
青筠发布了新的文献求助10
11秒前
妩媚的夜柳完成签到 ,获得积分10
11秒前
赘婿应助白糖采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932