Mammography classification with multi-view deep learning techniques: Investigating graph and transformer-based architectures

可解释性 计算机科学 人工智能 机器学习 深度学习 变压器 乳腺摄影术 卷积神经网络 建筑 图形 标杆管理 乳腺癌 理论计算机科学 电压 医学 癌症 内科学 艺术 物理 量子力学 营销 业务 视觉艺术
作者
Francesco Manigrasso,Rosario Milazzo,Alessandro Sebastian Russo,Fabrizio Lamberti,Fredrik Strand,Andrea Pagnani,Lia Morra
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103320-103320
标识
DOI:10.1016/j.media.2024.103320
摘要

The potential and promise of deep learning systems to provide an independent assessment and relieve radiologists' burden in screening mammography have been recognized in several studies. However, the low cancer prevalence, the need to process high-resolution images, and the need to combine information from multiple views and scales still pose technical challenges. Multi-view architectures that combine information from the four mammographic views to produce an exam-level classification score are a promising approach to the automated processing of screening mammography. However, training such architectures from exam-level labels, without relying on pixel-level supervision, requires very large datasets and may result in suboptimal accuracy. Emerging architectures such as Visual Transformers (ViT) and graph-based architectures can potentially integrate ipsi-lateral and contra-lateral breast views better than traditional convolutional neural networks, thanks to their stronger ability of modeling long-range dependencies. In this paper, we extensively evaluate novel transformer-based and graph-based architectures against state-of-the-art multi-view convolutional neural networks, trained in a weakly-supervised setting on a middle-scale dataset, both in terms of performance and interpretability. Extensive experiments on the CSAW dataset suggest that, while transformer-based architecture outperform other architectures, different inductive biases lead to complementary strengths and weaknesses, as each architecture is sensitive to different signs and mammographic features. Hence, an ensemble of different architectures should be preferred over a winner-takes-all approach to achieve more accurate and robust results. Overall, the findings highlight the potential of a wide range of multi-view architectures for breast cancer classification, even in datasets of relatively modest size, although the detection of small lesions remains challenging without pixel-wise supervision or ad-hoc networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清漪发布了新的文献求助10
1秒前
寂寞致幻完成签到,获得积分10
2秒前
LiM发布了新的文献求助10
2秒前
传奇3应助多多采纳,获得10
3秒前
化合物来发布了新的文献求助10
3秒前
leeOOO发布了新的文献求助30
3秒前
善良的忆翠完成签到,获得积分10
4秒前
hanzhangjian发布了新的文献求助10
4秒前
4秒前
小小完成签到 ,获得积分10
5秒前
bkagyin应助ggg采纳,获得10
6秒前
清脆初晴完成签到,获得积分10
6秒前
6秒前
FK7完成签到,获得积分10
6秒前
2090完成签到,获得积分10
7秒前
合适书芹完成签到,获得积分10
8秒前
善学以致用应助见青山采纳,获得10
9秒前
9秒前
姝飞糊涂应助科研通管家采纳,获得20
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
1122完成签到 ,获得积分10
10秒前
风再起时应助科研通管家采纳,获得20
10秒前
10秒前
11秒前
liyunma完成签到,获得积分10
11秒前
且听风吟发布了新的文献求助10
12秒前
13秒前
勤奋的刺猬完成签到,获得积分10
13秒前
liang19640908完成签到 ,获得积分10
13秒前
13秒前
14秒前
可爱的函函应助张凤采纳,获得10
14秒前
hhhh发布了新的文献求助10
15秒前
hyh完成签到,获得积分10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167605
求助须知:如何正确求助?哪些是违规求助? 2819067
关于积分的说明 7924710
捐赠科研通 2478949
什么是DOI,文献DOI怎么找? 1320553
科研通“疑难数据库(出版商)”最低求助积分说明 632821
版权声明 602443