Mammography classification with multi-view deep learning techniques: Investigating graph and transformer-based architectures

可解释性 计算机科学 人工智能 机器学习 深度学习 变压器 乳腺摄影术 卷积神经网络 建筑 图形 标杆管理 乳腺癌 理论计算机科学 物理 癌症 内科学 艺术 业务 视觉艺术 营销 电压 医学 量子力学
作者
Francesco Manigrasso,Rosario Milazzo,Alessandro Sebastian Russo,Fabrizio Lamberti,Fredrik Strand,Andrea Pagnani,Lia Morra
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103320-103320 被引量:18
标识
DOI:10.1016/j.media.2024.103320
摘要

The potential and promise of deep learning systems to provide an independent assessment and relieve radiologists' burden in screening mammography have been recognized in several studies. However, the low cancer prevalence, the need to process high-resolution images, and the need to combine information from multiple views and scales still pose technical challenges. Multi-view architectures that combine information from the four mammographic views to produce an exam-level classification score are a promising approach to the automated processing of screening mammography. However, training such architectures from exam-level labels, without relying on pixel-level supervision, requires very large datasets and may result in suboptimal accuracy. Emerging architectures such as Visual Transformers (ViT) and graph-based architectures can potentially integrate ipsi-lateral and contra-lateral breast views better than traditional convolutional neural networks, thanks to their stronger ability of modeling long-range dependencies. In this paper, we extensively evaluate novel transformer-based and graph-based architectures against state-of-the-art multi-view convolutional neural networks, trained in a weakly-supervised setting on a middle-scale dataset, both in terms of performance and interpretability. Extensive experiments on the CSAW dataset suggest that, while transformer-based architecture outperform other architectures, different inductive biases lead to complementary strengths and weaknesses, as each architecture is sensitive to different signs and mammographic features. Hence, an ensemble of different architectures should be preferred over a winner-takes-all approach to achieve more accurate and robust results. Overall, the findings highlight the potential of a wide range of multi-view architectures for breast cancer classification, even in datasets of relatively modest size, although the detection of small lesions remains challenging without pixel-wise supervision or ad-hoc networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃真心发布了新的文献求助10
刚刚
ysh发布了新的文献求助30
1秒前
怀民完成签到 ,获得积分10
2秒前
小瓶子发布了新的文献求助10
2秒前
大模型应助第七个星球采纳,获得10
2秒前
2秒前
殷勤的帽子关注了科研通微信公众号
3秒前
小猪完成签到 ,获得积分10
3秒前
热情蓝发布了新的文献求助10
4秒前
TTOM发布了新的文献求助10
4秒前
4秒前
YCY完成签到,获得积分10
5秒前
6秒前
慕慕完成签到 ,获得积分10
7秒前
7秒前
ysh完成签到,获得积分10
8秒前
ztt发布了新的文献求助10
9秒前
超级无敌好吃完成签到,获得积分10
9秒前
wzc发布了新的文献求助10
9秒前
3129386658发布了新的文献求助10
9秒前
我吃柠檬发布了新的文献求助10
9秒前
Tancl1235完成签到,获得积分10
9秒前
粥粥发布了新的文献求助10
10秒前
11秒前
薛武发布了新的文献求助10
12秒前
岁岁菌完成签到,获得积分10
13秒前
松子发布了新的文献求助10
13秒前
14秒前
英俊的铭应助有梦想的人采纳,获得10
15秒前
15秒前
15秒前
17秒前
热情蓝完成签到,获得积分20
17秒前
Zayro完成签到,获得积分10
18秒前
科研通AI6应助羊羊羊采纳,获得10
18秒前
19秒前
Lucas应助cordon采纳,获得10
20秒前
20秒前
simdows完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396