Mammography classification with multi-view deep learning techniques: Investigating graph and transformer-based architectures

可解释性 计算机科学 人工智能 机器学习 深度学习 变压器 乳腺摄影术 卷积神经网络 建筑 图形 标杆管理 乳腺癌 理论计算机科学 电压 医学 癌症 内科学 艺术 物理 量子力学 营销 业务 视觉艺术
作者
Francesco Manigrasso,Rosario Milazzo,Alessandro Sebastian Russo,Fabrizio Lamberti,Fredrik Strand,Andrea Pagnani,Lia Morra
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103320-103320
标识
DOI:10.1016/j.media.2024.103320
摘要

The potential and promise of deep learning systems to provide an independent assessment and relieve radiologists' burden in screening mammography have been recognized in several studies. However, the low cancer prevalence, the need to process high-resolution images, and the need to combine information from multiple views and scales still pose technical challenges. Multi-view architectures that combine information from the four mammographic views to produce an exam-level classification score are a promising approach to the automated processing of screening mammography. However, training such architectures from exam-level labels, without relying on pixel-level supervision, requires very large datasets and may result in suboptimal accuracy. Emerging architectures such as Visual Transformers (ViT) and graph-based architectures can potentially integrate ipsi-lateral and contra-lateral breast views better than traditional convolutional neural networks, thanks to their stronger ability of modeling long-range dependencies. In this paper, we extensively evaluate novel transformer-based and graph-based architectures against state-of-the-art multi-view convolutional neural networks, trained in a weakly-supervised setting on a middle-scale dataset, both in terms of performance and interpretability. Extensive experiments on the CSAW dataset suggest that, while transformer-based architecture outperform other architectures, different inductive biases lead to complementary strengths and weaknesses, as each architecture is sensitive to different signs and mammographic features. Hence, an ensemble of different architectures should be preferred over a winner-takes-all approach to achieve more accurate and robust results. Overall, the findings highlight the potential of a wide range of multi-view architectures for breast cancer classification, even in datasets of relatively modest size, although the detection of small lesions remains challenging without pixel-wise supervision or ad-hoc networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研老兵完成签到,获得积分10
刚刚
1秒前
落桑完成签到,获得积分10
1秒前
myjf完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
猪小猪完成签到,获得积分10
2秒前
3秒前
yigeluobo完成签到 ,获得积分10
3秒前
4秒前
宋云媚完成签到,获得积分10
4秒前
浦肯野发布了新的文献求助10
5秒前
5秒前
5秒前
YiWei发布了新的文献求助10
5秒前
忆枫发布了新的文献求助10
5秒前
美丽的问安完成签到 ,获得积分10
5秒前
Joany完成签到,获得积分10
6秒前
6秒前
Wzebrafish发布了新的文献求助10
6秒前
6秒前
甜蜜慕凝完成签到,获得积分10
7秒前
小周发布了新的文献求助10
8秒前
8秒前
暴躁的晓啸完成签到 ,获得积分10
8秒前
Revision完成签到,获得积分10
8秒前
杨静发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
滴滴哒发布了新的文献求助10
9秒前
汤飞柏发布了新的文献求助10
9秒前
酷波er应助jzyy采纳,获得10
10秒前
pluto应助Joany采纳,获得10
10秒前
大刘完成签到,获得积分10
11秒前
袁泽完成签到,获得积分10
11秒前
11秒前
告白气球发布了新的文献求助10
11秒前
乔烨磊发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813