Research on filling missing GNSS precipitable water vapor time series data using the PSORF model combined with reanalysis datasets

全球导航卫星系统应用 系列(地层学) 可降水量 缺少数据 时间序列 计算机科学 环境科学 遥感 气象学 水蒸气 地理 全球定位系统 机器学习 地质学 电信 古生物学
作者
Zhihao Wang,Hongzhou Chai,Naiquan Zheng,Lulu Ming,Peng Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8a79
摘要

Abstract The inversion of precipitable water vapor (PWV) using the Global Navigation Satellite System (GNSS) has advantages such as all-weather observation, high precision, low cost, and high temporal resolution. Currently, long-term GNSS-PWV data has become an important data source for studying climate change. However, due to factors such as equipment failures, observation technology limitations, and estimation model errors, missing data and outliers often occur in real-time or post-processed PWV time series data. Furthermore, the main sources of GNSS-PWV errors are influenced by the atmospheric weighted mean temperature (Tm) and surface meteorological data (pressure and temperature). The results indicate that the European Centre for Medium⁃Range Weather Forecasts Reanalysis v5 (ERA5) dataset exhibits high accuracy in the Chinese region, making it suitable for GNSS-PWV inversion. By utilizing ERA5 meteorological data to calculate hourly GNSS-PWV and conducting accuracy assessments, it is demonstrated that the PWV inverted based on GNSS and ERA5 meteorological parameters possesses high precision. Based on this, this study selects GNSS stations from the Crustal Movement Observation Network of China (CMONOC) where the proportion of missing measured data is less than 8%. By combining ERA5, random forest (RF), and particle swarm optimization (PSO) algorithms, a new model called PSORF is proposed to fill in missing values in GNSS-PWV time series data. The research findings reveal that the R2 and RMSE of PSORF-PWV are 0.98 and 2.16 mm, respectively. Additionally, GNSS stations with more than 8% missing measured data are utilized to validate the accuracy of the PSORF model. A comparative analysis is conducted between the results obtained through the PSORF model and the ERA5-PWV acquired via traditional interpolation methods. The MAE and RMSE of PSORF-PWV are reduced by 21% and 17%, respectively, indicating that the PSORF model excels in filling missing data and effectively enhances the accuracy and reliability of PWV time series analysis. This study not only presents an effective approach for processing missing PWV data but also evaluates the applicability and accuracy of the ERA5 dataset in PWV inversion. This provides crucial technical support and data security for climate change research, short-term humidity field forecasting, and studies in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrW1111发布了新的文献求助10
刚刚
kmzzy完成签到 ,获得积分10
1秒前
吴壮完成签到,获得积分10
1秒前
李珂完成签到,获得积分10
1秒前
我是老大应助you采纳,获得30
2秒前
愉快凌晴完成签到,获得积分10
2秒前
zhouleiwang完成签到,获得积分10
2秒前
2秒前
葡萄干发布了新的文献求助10
3秒前
sun完成签到,获得积分10
3秒前
秦磊完成签到,获得积分10
3秒前
哈哈发布了新的文献求助30
4秒前
onfire完成签到,获得积分10
5秒前
xxw完成签到,获得积分10
5秒前
not_lost完成签到,获得积分10
5秒前
6秒前
SciGPT应助危机的续采纳,获得10
6秒前
7秒前
ding应助白潇潇采纳,获得10
7秒前
莫歌发布了新的文献求助10
7秒前
飞鸿踏雪泥完成签到 ,获得积分10
7秒前
sxw完成签到,获得积分20
7秒前
共享精神应助飞飏采纳,获得10
8秒前
勤恳马里奥应助sun采纳,获得10
8秒前
所所应助缪甲烷采纳,获得10
9秒前
好的呢多谢大家那我告诉完成签到,获得积分10
9秒前
儒雅的导师完成签到,获得积分10
10秒前
不秃头完成签到,获得积分10
10秒前
kol完成签到,获得积分10
10秒前
俏皮小小完成签到,获得积分10
10秒前
个性千凝完成签到,获得积分10
11秒前
sxw发布了新的文献求助10
11秒前
小马甲应助1226采纳,获得10
12秒前
温暖的醉蓝完成签到,获得积分10
12秒前
12秒前
Ava应助冰雪物语采纳,获得10
12秒前
文献查找完成签到,获得积分10
13秒前
大模型应助mix多咯采纳,获得10
14秒前
丘比特应助含蓄心锁采纳,获得10
14秒前
打打应助贾贾采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134153
求助须知:如何正确求助?哪些是违规求助? 2785006
关于积分的说明 7769763
捐赠科研通 2440543
什么是DOI,文献DOI怎么找? 1297440
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792