Research on filling missing GNSS precipitable water vapor time series data using the PSORF model combined with reanalysis datasets

全球导航卫星系统应用 系列(地层学) 可降水量 缺少数据 时间序列 计算机科学 环境科学 遥感 气象学 水蒸气 地理 全球定位系统 机器学习 地质学 电信 古生物学
作者
Zhihao Wang,Hongzhou Chai,Naiquan Zheng,Lulu Ming,Peng Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8a79
摘要

Abstract The inversion of precipitable water vapor (PWV) using the Global Navigation Satellite System (GNSS) has advantages such as all-weather observation, high precision, low cost, and high temporal resolution. Currently, long-term GNSS-PWV data has become an important data source for studying climate change. However, due to factors such as equipment failures, observation technology limitations, and estimation model errors, missing data and outliers often occur in real-time or post-processed PWV time series data. Furthermore, the main sources of GNSS-PWV errors are influenced by the atmospheric weighted mean temperature (Tm) and surface meteorological data (pressure and temperature). The results indicate that the European Centre for Medium⁃Range Weather Forecasts Reanalysis v5 (ERA5) dataset exhibits high accuracy in the Chinese region, making it suitable for GNSS-PWV inversion. By utilizing ERA5 meteorological data to calculate hourly GNSS-PWV and conducting accuracy assessments, it is demonstrated that the PWV inverted based on GNSS and ERA5 meteorological parameters possesses high precision. Based on this, this study selects GNSS stations from the Crustal Movement Observation Network of China (CMONOC) where the proportion of missing measured data is less than 8%. By combining ERA5, random forest (RF), and particle swarm optimization (PSO) algorithms, a new model called PSORF is proposed to fill in missing values in GNSS-PWV time series data. The research findings reveal that the R2 and RMSE of PSORF-PWV are 0.98 and 2.16 mm, respectively. Additionally, GNSS stations with more than 8% missing measured data are utilized to validate the accuracy of the PSORF model. A comparative analysis is conducted between the results obtained through the PSORF model and the ERA5-PWV acquired via traditional interpolation methods. The MAE and RMSE of PSORF-PWV are reduced by 21% and 17%, respectively, indicating that the PSORF model excels in filling missing data and effectively enhances the accuracy and reliability of PWV time series analysis. This study not only presents an effective approach for processing missing PWV data but also evaluates the applicability and accuracy of the ERA5 dataset in PWV inversion. This provides crucial technical support and data security for climate change research, short-term humidity field forecasting, and studies in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyx完成签到 ,获得积分10
1秒前
SYLH应助负责吃饭采纳,获得20
3秒前
zwf123完成签到,获得积分10
4秒前
高高芷完成签到,获得积分10
4秒前
负责吃饭完成签到,获得积分10
7秒前
ganjqly应助毛毛球采纳,获得20
9秒前
罐罐儿完成签到,获得积分0
9秒前
王哈哈完成签到,获得积分10
9秒前
teborlee完成签到,获得积分10
13秒前
liangmh完成签到,获得积分10
13秒前
孙淑婷完成签到,获得积分20
13秒前
MY完成签到,获得积分20
13秒前
Xiaoyan完成签到,获得积分10
14秒前
方圆学术完成签到,获得积分10
16秒前
17秒前
Coral完成签到,获得积分10
20秒前
毛毛球完成签到,获得积分10
20秒前
汤圆完成签到,获得积分10
21秒前
王博士完成签到,获得积分10
21秒前
橘寄完成签到,获得积分10
21秒前
CDI和LIB完成签到,获得积分10
22秒前
like发布了新的文献求助10
23秒前
冷傲的帽子完成签到 ,获得积分10
26秒前
30秒前
内向南风完成签到 ,获得积分10
31秒前
华仔应助like采纳,获得10
35秒前
35秒前
35秒前
35秒前
soss完成签到,获得积分10
36秒前
38秒前
打打应助HXX采纳,获得30
40秒前
DrLuffy完成签到,获得积分10
40秒前
欢喜蛋挞发布了新的文献求助10
40秒前
40秒前
小杨完成签到,获得积分10
41秒前
彩色半烟完成签到,获得积分10
41秒前
土木研学僧完成签到,获得积分10
43秒前
SYLH应助负责吃饭采纳,获得20
43秒前
淡然的奎完成签到,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965787
求助须知:如何正确求助?哪些是违规求助? 3511088
关于积分的说明 11156314
捐赠科研通 3245709
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268