医学
逻辑回归
接收机工作特性
血液透析
随机森林
人工智能
机器学习
支持向量机
回顾性队列研究
死因
回归
回归分析
预测值
队列
预测建模
内科学
统计
计算机科学
数学
疾病
作者
Minjie Chen,Youbing Zeng,Mengting Liu,Zhenghui Li,Jiazhen Wu,Xuan Tian,Yunuo Wang,Yuanwen Xu
标识
DOI:10.1111/1744-9987.14212
摘要
Abstract Introduction The elevated mortality and hospitalization rates among hemodialysis (HD) patients underscore the necessity for the development of accurate predictive tools. This study developed two models for predicting all‐cause mortality and time to death—one using a comprehensive database and another simpler model based on demographic and clinical data without laboratory tests. Method A retrospective cohort study was conducted from January 2017 to June 2023. Two models were created: Model A with 85 variables and Model B with 22 variables. We assessed the models using random forest (RF), support vector machine, and logistic regression, comparing their performance via the AU‐ROC. The RF regression model was used to predict time to death. To identify the most relevant factors for prediction, the Shapley value method was used. Results Among 359 HD patients, the RF model provided the most reliable prediction. The optimized Model A showed an AU‐ROC of 0.86 ± 0.07, a sensitivity of 0.86, and a specificity of 0.75 for predicting all‐cause mortality. It also had an R 2 of 0.59 for predicting time to death. The optimized Model B had an AU‐ROC of 0.80 ± 0.06, a sensitivity of 0.81, and a specificity of 0.70 for predicting all‐cause mortality. In addition, it had an R 2 of 0.81 for predicting time to death. Conclusion Two new interpretable clinical tools have been proposed to predict all‐cause mortality and time to death in HD patients using machine learning models. The minimal and readily accessible data on which Model B is based makes it a valuable tool for integrating into clinical decision‐making processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI