Interpretable machine learning models for the prediction of all‐cause mortality and time to death in hemodialysis patients

医学 逻辑回归 接收机工作特性 血液透析 随机森林 人工智能 机器学习 支持向量机 回顾性队列研究 死因 回归 回归分析 预测值 队列 预测建模 内科学 统计 计算机科学 数学 疾病
作者
Minjie Chen,Youbing Zeng,Mengting Liu,Zhenghui Li,Jiazhen Wu,Xuan Tian,Yunuo Wang,Yuanwen Xu
出处
期刊:Therapeutic Apheresis and Dialysis [Wiley]
标识
DOI:10.1111/1744-9987.14212
摘要

Abstract Introduction The elevated mortality and hospitalization rates among hemodialysis (HD) patients underscore the necessity for the development of accurate predictive tools. This study developed two models for predicting all‐cause mortality and time to death—one using a comprehensive database and another simpler model based on demographic and clinical data without laboratory tests. Method A retrospective cohort study was conducted from January 2017 to June 2023. Two models were created: Model A with 85 variables and Model B with 22 variables. We assessed the models using random forest (RF), support vector machine, and logistic regression, comparing their performance via the AU‐ROC. The RF regression model was used to predict time to death. To identify the most relevant factors for prediction, the Shapley value method was used. Results Among 359 HD patients, the RF model provided the most reliable prediction. The optimized Model A showed an AU‐ROC of 0.86 ± 0.07, a sensitivity of 0.86, and a specificity of 0.75 for predicting all‐cause mortality. It also had an R 2 of 0.59 for predicting time to death. The optimized Model B had an AU‐ROC of 0.80 ± 0.06, a sensitivity of 0.81, and a specificity of 0.70 for predicting all‐cause mortality. In addition, it had an R 2 of 0.81 for predicting time to death. Conclusion Two new interpretable clinical tools have been proposed to predict all‐cause mortality and time to death in HD patients using machine learning models. The minimal and readily accessible data on which Model B is based makes it a valuable tool for integrating into clinical decision‐making processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助若狂采纳,获得10
刚刚
11111发布了新的文献求助30
刚刚
溜溜发布了新的文献求助10
1秒前
2秒前
wanli445完成签到,获得积分10
3秒前
科研通AI2S应助satchzhao采纳,获得10
3秒前
是小程啊完成签到 ,获得积分10
3秒前
琪琪扬扬完成签到,获得积分10
4秒前
11111完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
fatal完成签到,获得积分10
7秒前
过分动真发布了新的文献求助20
7秒前
高贵的夜南完成签到,获得积分10
7秒前
火星上的菲鹰给冰激凌UP的求助进行了留言
7秒前
8秒前
尺素寸心发布了新的文献求助10
9秒前
orixero应助BOSLobster采纳,获得10
10秒前
orixero应助yatou5651采纳,获得10
11秒前
在水一方应助卡卡采纳,获得10
11秒前
追寻羿完成签到 ,获得积分10
12秒前
hhzz发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
15秒前
科研通AI2S应助好玩和有趣采纳,获得10
15秒前
美丽跳跳糖完成签到,获得积分20
15秒前
15秒前
丘比特应助llll采纳,获得10
16秒前
16秒前
迟大猫应助su采纳,获得10
16秒前
发嗲的戎完成签到 ,获得积分10
17秒前
17秒前
内向凌兰完成签到,获得积分10
17秒前
17秒前
zhappy完成签到,获得积分10
18秒前
satchzhao发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808