Interpretable machine learning models for the prediction of all‐cause mortality and time to death in hemodialysis patients

医学 逻辑回归 接收机工作特性 血液透析 随机森林 人工智能 机器学习 支持向量机 回顾性队列研究 死因 回归 回归分析 预测值 队列 预测建模 内科学 统计 计算机科学 数学 疾病
作者
Minjie Chen,Youbing Zeng,Mengting Liu,Zhenghui Li,Jiazhen Wu,Xuan Tian,Yunuo Wang,Yuanwen Xu
出处
期刊:Therapeutic Apheresis and Dialysis [Wiley]
标识
DOI:10.1111/1744-9987.14212
摘要

Abstract Introduction The elevated mortality and hospitalization rates among hemodialysis (HD) patients underscore the necessity for the development of accurate predictive tools. This study developed two models for predicting all‐cause mortality and time to death—one using a comprehensive database and another simpler model based on demographic and clinical data without laboratory tests. Method A retrospective cohort study was conducted from January 2017 to June 2023. Two models were created: Model A with 85 variables and Model B with 22 variables. We assessed the models using random forest (RF), support vector machine, and logistic regression, comparing their performance via the AU‐ROC. The RF regression model was used to predict time to death. To identify the most relevant factors for prediction, the Shapley value method was used. Results Among 359 HD patients, the RF model provided the most reliable prediction. The optimized Model A showed an AU‐ROC of 0.86 ± 0.07, a sensitivity of 0.86, and a specificity of 0.75 for predicting all‐cause mortality. It also had an R 2 of 0.59 for predicting time to death. The optimized Model B had an AU‐ROC of 0.80 ± 0.06, a sensitivity of 0.81, and a specificity of 0.70 for predicting all‐cause mortality. In addition, it had an R 2 of 0.81 for predicting time to death. Conclusion Two new interpretable clinical tools have been proposed to predict all‐cause mortality and time to death in HD patients using machine learning models. The minimal and readily accessible data on which Model B is based makes it a valuable tool for integrating into clinical decision‐making processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
4秒前
Makta完成签到,获得积分10
5秒前
tfq200完成签到,获得积分10
5秒前
dadi发布了新的文献求助10
6秒前
乐观乐枫完成签到,获得积分10
7秒前
9秒前
木易发布了新的文献求助10
9秒前
于是乎完成签到 ,获得积分10
10秒前
长情立诚发布了新的文献求助10
10秒前
11秒前
11秒前
迷路的懒熊完成签到,获得积分10
11秒前
13秒前
14秒前
chu完成签到,获得积分10
15秒前
15秒前
二胡发布了新的文献求助10
15秒前
wjfan发布了新的文献求助10
15秒前
雪莉酒完成签到,获得积分10
16秒前
黎长江发布了新的文献求助10
16秒前
fmwang发布了新的文献求助10
17秒前
幻月完成签到,获得积分10
17秒前
18秒前
18秒前
天天向上发布了新的文献求助30
19秒前
完美世界应助清晨之风采纳,获得10
19秒前
20秒前
22秒前
追寻南珍发布了新的文献求助10
22秒前
乐观乐枫发布了新的文献求助10
23秒前
曾经可乐完成签到 ,获得积分10
24秒前
.....完成签到,获得积分10
24秒前
傅朝西完成签到,获得积分10
24秒前
李_小_八完成签到,获得积分10
24秒前
乐观无心发布了新的文献求助10
25秒前
26秒前
母广明关注了科研通微信公众号
26秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685