A Deep Prediction Framework for Multi-Source Information via Heterogeneous GNN

计算机科学
作者
Zhen Wu,Jingya Zhou,Jinghui Zhang,Ling Liu,C Huang
标识
DOI:10.1145/3637528.3671966
摘要

Predicting information diffusion is a fundamental task in online social networks (OSNs). Recent studies mainly focus on the popularity prediction of specific content but ignore the correlation between multiple pieces of information. The topic is often used to correlate such information and can correspond to multi-source information. The popularity of a topic relies not only on information diffusion time but also on users' followership. Current solutions concentrate on hard time partition, lacking versatility. Meanwhile, the hop-based sampling adopted in state-of-the-art (SOTA) methods encounters redundant user followership. Moreover, many SOTA methods are not designed with good modularity and lack evaluation for each functional module and enlightening discussion. This paper presents a novel extensible framework, coined as HIF, for effective popularity prediction in OSNs with four original contributions. First, HIF adopts a soft partition of users and time intervals to better learn users' behavioral preferences over time. Second, HIF utilizes weighted sampling to optimize the construction of heterogeneous graphs and reduce redundancy. Furthermore, HIF supports multi-task collaborative optimization to improve its learning capability. Finally, as an extensible framework, HIF provides generic module slots to combine different submodules (e.g., RNNs, Transformer encoders). Experiments show that HIF significantly improves performance and interpretability compared to SOTAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正好完成签到,获得积分10
1秒前
2秒前
2秒前
菌菇发布了新的文献求助10
3秒前
怕黑冰烟完成签到 ,获得积分10
4秒前
4秒前
CipherSage应助why采纳,获得10
5秒前
寒冷书竹发布了新的文献求助10
7秒前
yufeng发布了新的文献求助10
7秒前
张爱学发布了新的文献求助10
7秒前
Lucas应助guan采纳,获得10
7秒前
笨笨电灯胆完成签到,获得积分20
8秒前
英俊的铭应助就叫十一吧采纳,获得10
9秒前
搞怪面包完成签到,获得积分10
9秒前
坚定的寄琴完成签到,获得积分10
9秒前
NexusExplorer应助落月铭采纳,获得10
10秒前
wanjinlei完成签到 ,获得积分10
11秒前
斯文静竹发布了新的文献求助30
11秒前
12秒前
爆米花应助sun采纳,获得10
12秒前
FashionBoy应助时倾采纳,获得10
14秒前
14秒前
14秒前
aojoo发布了新的文献求助10
15秒前
erdongsir完成签到,获得积分10
16秒前
慕青应助miao采纳,获得10
16秒前
CodeCraft应助复杂若男采纳,获得10
16秒前
17秒前
17秒前
17秒前
why发布了新的文献求助10
17秒前
斯文败类应助wenbin采纳,获得10
17秒前
18秒前
郭小胖14发布了新的文献求助10
18秒前
安谣发布了新的文献求助10
21秒前
21秒前
21秒前
xiaobai完成签到,获得积分20
22秒前
gggja发布了新的文献求助10
22秒前
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326