亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Facial Action Unit Representation based on Self-supervised Learning with Ensembled Priori Constraints

先验与后验 人工智能 模式识别(心理学) 计算机科学 代表(政治) 单位(环理论) 动作(物理) 机器学习 数学 哲学 物理 数学教育 认识论 量子力学 政治 政治学 法学
作者
Haifeng Chen,Peng Zhang,Chujia Guo,Ke Lü,Dongmei Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5045-5059
标识
DOI:10.1109/tip.2024.3446250
摘要

Facial action units (AUs) focus on a comprehensive set of atomic facial muscle movements for human expression understanding. Based on supervised learning, discriminative AU representation can be achieved from local patches where the AUs are located. Unfortunately, accurate AU localization and characterization are challenged by the tremendous manual annotations, which limits the performance of AU recognition in realistic scenarios. In this study, we propose an end-to-end self-supervised AU representation learning model (SsupAU) to learn AU representations from unlabeled facial videos. Specifically, the input face is decomposed into six components using auto-encoders: five photo-geometric meaningful components, together with 2D flow field AUs. By constructing the canonical neutral face, posed neutral face, and posed expressional face gradually, these components can be disentangled without supervision, therefore the AU representations can be learned. To construct the canonical neutral face without manually labeled ground truth of emotion state or AU intensity, two priori knowledge based assumptions are proposed: 1) identity consistency, which explores the identical albedos and depths of different frames in a face video, and helps to learn the camera color mode as an extra cue for canonical neutral face recovery. 2) average face, which enables the model to discover a 'neutral facial expression' of the canonical neutral face and decouple the AUs in representation learning. To the best of our knowledge, this is the first attempt to design self-supervised AU representation learning method based on the definition of AUs. Substantial experiments on benchmark datasets have demonstrated the superior performance of the proposed work in comparison to other state-of-the-art approaches, as well as an outstanding capability of decomposing input face into meaningful factors for its reconstruction. The code is made available at https://github.com/Sunner4nwpu/SsupAU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理吐司完成签到,获得积分10
3秒前
awe应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
22秒前
ppg123应助Nancy采纳,获得10
37秒前
ppg123应助Nancy采纳,获得10
37秒前
嵩嵩关注了科研通微信公众号
39秒前
牛幻香完成签到,获得积分10
42秒前
51秒前
禅依发布了新的文献求助10
56秒前
1分钟前
rinnki关注了科研通微信公众号
1分钟前
嵩嵩发布了新的文献求助10
1分钟前
1分钟前
rinnki发布了新的文献求助30
1分钟前
Jasper应助xiaoze采纳,获得10
1分钟前
1分钟前
小二郎应助xj采纳,获得10
1分钟前
ShellyMaya完成签到 ,获得积分10
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
Sylvia_J完成签到 ,获得积分10
2分钟前
2分钟前
李三日发布了新的文献求助10
2分钟前
3分钟前
3分钟前
xiaoze发布了新的文献求助10
3分钟前
webmaster完成签到,获得积分10
3分钟前
3分钟前
禅依完成签到,获得积分10
3分钟前
3分钟前
HuiHui完成签到,获得积分10
4分钟前
gy完成签到,获得积分10
4分钟前
4分钟前
zqq完成签到,获得积分0
5分钟前
共享精神应助zhouzhou采纳,获得10
5分钟前
5分钟前
Nancy完成签到,获得积分10
5分钟前
6分钟前
VDC应助科研通管家采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248759
求助须知:如何正确求助?哪些是违规求助? 2892214
关于积分的说明 8270161
捐赠科研通 2560306
什么是DOI,文献DOI怎么找? 1388970
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627850