Facial Action Unit Representation based on Self-supervised Learning with Ensembled Priori Constraints

先验与后验 人工智能 模式识别(心理学) 计算机科学 代表(政治) 单位(环理论) 动作(物理) 机器学习 数学 哲学 物理 数学教育 认识论 量子力学 政治 政治学 法学
作者
Haifeng Chen,Peng Zhang,Chujia Guo,Ke Lü,Dongmei Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5045-5059
标识
DOI:10.1109/tip.2024.3446250
摘要

Facial action units (AUs) focus on a comprehensive set of atomic facial muscle movements for human expression understanding. Based on supervised learning, discriminative AU representation can be achieved from local patches where the AUs are located. Unfortunately, accurate AU localization and characterization are challenged by the tremendous manual annotations, which limits the performance of AU recognition in realistic scenarios. In this study, we propose an end-to-end self-supervised AU representation learning model (SsupAU) to learn AU representations from unlabeled facial videos. Specifically, the input face is decomposed into six components using auto-encoders: five photo-geometric meaningful components, together with 2D flow field AUs. By constructing the canonical neutral face, posed neutral face, and posed expressional face gradually, these components can be disentangled without supervision, therefore the AU representations can be learned. To construct the canonical neutral face without manually labeled ground truth of emotion state or AU intensity, two priori knowledge based assumptions are proposed: 1) identity consistency, which explores the identical albedos and depths of different frames in a face video, and helps to learn the camera color mode as an extra cue for canonical neutral face recovery. 2) average face, which enables the model to discover a 'neutral facial expression' of the canonical neutral face and decouple the AUs in representation learning. To the best of our knowledge, this is the first attempt to design self-supervised AU representation learning method based on the definition of AUs. Substantial experiments on benchmark datasets have demonstrated the superior performance of the proposed work in comparison to other state-of-the-art approaches, as well as an outstanding capability of decomposing input face into meaningful factors for its reconstruction. The code is made available at https://github.com/Sunner4nwpu/SsupAU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风信子完成签到,获得积分10
1秒前
畅快蓝血完成签到,获得积分10
1秒前
领导范儿应助俊逸翠丝采纳,获得10
1秒前
ZhouJing完成签到,获得积分10
1秒前
天天快乐应助章不胖采纳,获得10
3秒前
GXY完成签到,获得积分10
3秒前
Amanda完成签到,获得积分10
4秒前
甲乙完成签到,获得积分10
4秒前
牛德辉完成签到,获得积分20
4秒前
yuan完成签到 ,获得积分10
4秒前
LLLLL完成签到,获得积分10
4秒前
舒适的平蓝完成签到,获得积分10
5秒前
自觉的火龙果完成签到,获得积分10
5秒前
帅气寒松完成签到,获得积分10
5秒前
勤奋柚子发布了新的文献求助10
6秒前
AntonioJ发布了新的文献求助10
6秒前
6秒前
光电效应完成签到,获得积分10
6秒前
Rocky_Qi完成签到,获得积分10
7秒前
yrw完成签到,获得积分10
7秒前
李顺杰完成签到,获得积分10
8秒前
8秒前
8秒前
sy完成签到 ,获得积分10
8秒前
8秒前
MX001完成签到,获得积分10
8秒前
机灵谷南完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
HJJHJH应助科研通管家采纳,获得30
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
mochen完成签到,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645317
求助须知:如何正确求助?哪些是违规求助? 4768461
关于积分的说明 15028063
捐赠科研通 4803918
什么是DOI,文献DOI怎么找? 2568536
邀请新用户注册赠送积分活动 1525881
关于科研通互助平台的介绍 1485508