Facial Action Unit Representation based on Self-supervised Learning with Ensembled Priori Constraints

先验与后验 人工智能 模式识别(心理学) 计算机科学 代表(政治) 单位(环理论) 动作(物理) 机器学习 数学 物理 哲学 数学教育 认识论 政治 法学 量子力学 政治学
作者
Haifeng Chen,Peng Zhang,Chujia Guo,Ke Lü,Dongmei Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5045-5059
标识
DOI:10.1109/tip.2024.3446250
摘要

Facial action units (AUs) focus on a comprehensive set of atomic facial muscle movements for human expression understanding. Based on supervised learning, discriminative AU representation can be achieved from local patches where the AUs are located. Unfortunately, accurate AU localization and characterization are challenged by the tremendous manual annotations, which limits the performance of AU recognition in realistic scenarios. In this study, we propose an end-to-end self-supervised AU representation learning model (SsupAU) to learn AU representations from unlabeled facial videos. Specifically, the input face is decomposed into six components using auto-encoders: five photo-geometric meaningful components, together with 2D flow field AUs. By constructing the canonical neutral face, posed neutral face, and posed expressional face gradually, these components can be disentangled without supervision, therefore the AU representations can be learned. To construct the canonical neutral face without manually labeled ground truth of emotion state or AU intensity, two priori knowledge based assumptions are proposed: 1) identity consistency, which explores the identical albedos and depths of different frames in a face video, and helps to learn the camera color mode as an extra cue for canonical neutral face recovery. 2) average face, which enables the model to discover a 'neutral facial expression' of the canonical neutral face and decouple the AUs in representation learning. To the best of our knowledge, this is the first attempt to design self-supervised AU representation learning method based on the definition of AUs. Substantial experiments on benchmark datasets have demonstrated the superior performance of the proposed work in comparison to other state-of-the-art approaches, as well as an outstanding capability of decomposing input face into meaningful factors for its reconstruction. The code is made available at https://github.com/Sunner4nwpu/SsupAU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助凤凰山采纳,获得10
1秒前
CodeCraft应助lxgz采纳,获得10
1秒前
2秒前
djbj2022发布了新的文献求助10
3秒前
zcx完成签到,获得积分10
3秒前
Strange完成签到,获得积分10
3秒前
nebula应助麦麦采纳,获得10
3秒前
Eason完成签到,获得积分10
3秒前
迫切发布了新的文献求助10
4秒前
压力屾大完成签到,获得积分10
4秒前
5秒前
5秒前
极品男大发布了新的文献求助10
7秒前
7秒前
天天快乐应助gg采纳,获得10
8秒前
包子凯越完成签到,获得积分10
8秒前
swat完成签到,获得积分10
8秒前
wp4455777发布了新的文献求助10
9秒前
万能图书馆应助Shirley采纳,获得30
9秒前
9秒前
伯努利发布了新的文献求助10
9秒前
10秒前
Bravetwq完成签到,获得积分10
10秒前
11秒前
在水一方应助温伊采纳,获得10
11秒前
11秒前
完美世界应助整齐荟采纳,获得30
12秒前
AoAoo发布了新的文献求助10
12秒前
AIO完成签到,获得积分10
12秒前
snow完成签到,获得积分10
13秒前
13秒前
Zzy22完成签到,获得积分10
13秒前
董老师完成签到,获得积分10
14秒前
AIO发布了新的文献求助10
15秒前
佳佳应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
佳佳应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578