Facial Action Unit Representation based on Self-supervised Learning with Ensembled Priori Constraints

先验与后验 人工智能 模式识别(心理学) 计算机科学 代表(政治) 单位(环理论) 动作(物理) 机器学习 数学 哲学 物理 数学教育 认识论 量子力学 政治 政治学 法学
作者
Haifeng Chen,Peng Zhang,Chujia Guo,Ke Lü,Dongmei Jiang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5045-5059
标识
DOI:10.1109/tip.2024.3446250
摘要

Facial action units (AUs) focus on a comprehensive set of atomic facial muscle movements for human expression understanding. Based on supervised learning, discriminative AU representation can be achieved from local patches where the AUs are located. Unfortunately, accurate AU localization and characterization are challenged by the tremendous manual annotations, which limits the performance of AU recognition in realistic scenarios. In this study, we propose an end-to-end self-supervised AU representation learning model (SsupAU) to learn AU representations from unlabeled facial videos. Specifically, the input face is decomposed into six components using auto-encoders: five photo-geometric meaningful components, together with 2D flow field AUs. By constructing the canonical neutral face, posed neutral face, and posed expressional face gradually, these components can be disentangled without supervision, therefore the AU representations can be learned. To construct the canonical neutral face without manually labeled ground truth of emotion state or AU intensity, two priori knowledge based assumptions are proposed: 1) identity consistency, which explores the identical albedos and depths of different frames in a face video, and helps to learn the camera color mode as an extra cue for canonical neutral face recovery. 2) average face, which enables the model to discover a 'neutral facial expression' of the canonical neutral face and decouple the AUs in representation learning. To the best of our knowledge, this is the first attempt to design self-supervised AU representation learning method based on the definition of AUs. Substantial experiments on benchmark datasets have demonstrated the superior performance of the proposed work in comparison to other state-of-the-art approaches, as well as an outstanding capability of decomposing input face into meaningful factors for its reconstruction. The code is made available at https://github.com/Sunner4nwpu/SsupAU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼完成签到,获得积分20
刚刚
moon完成签到,获得积分10
1秒前
丘比特应助冒尖竹笋儿采纳,获得10
1秒前
义气的钥匙完成签到,获得积分10
1秒前
领导范儿应助天天小女孩采纳,获得10
1秒前
天天快乐应助ri_290采纳,获得10
1秒前
蓝蓝发布了新的文献求助10
2秒前
2秒前
2秒前
ding应助htzy采纳,获得10
2秒前
feiyuzhang发布了新的文献求助10
3秒前
酷波er应助嗯嗯哈哈采纳,获得10
3秒前
Arthur Zhu完成签到,获得积分10
3秒前
小月亮完成签到,获得积分10
3秒前
3秒前
zgrmws应助ABC的风格采纳,获得10
5秒前
lxsll完成签到,获得积分10
6秒前
复杂的凝冬完成签到,获得积分10
6秒前
Ysdanz发布了新的文献求助10
6秒前
6秒前
扬子完成签到,获得积分10
6秒前
6秒前
Sene完成签到,获得积分10
7秒前
三余完成签到,获得积分10
7秒前
天天小女孩完成签到,获得积分10
7秒前
ClaudiaCY完成签到,获得积分10
8秒前
共享精神应助夕荀采纳,获得10
9秒前
9秒前
hbsand完成签到,获得积分10
9秒前
酷波er应助从容从灵采纳,获得10
10秒前
10秒前
Mic完成签到,获得积分0
10秒前
明理香烟发布了新的文献求助10
10秒前
GB完成签到 ,获得积分10
10秒前
11秒前
劳资懒得起网名完成签到,获得积分0
11秒前
11秒前
chun123发布了新的文献求助20
12秒前
xinxin完成签到,获得积分10
12秒前
wangbq完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997