Architecting ultra-thin SiO2 shell for high magnetic performance of Fe3O4 nanoparticles for biomedical applications

纳米技术 材料科学 纳米颗粒 壳体(结构) 磁性纳米粒子 复合材料
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Hossein Minouei,NULL AUTHOR_ID,Dae‐Eun Kim
出处
期刊:Inorganic Chemistry Communications [Elsevier BV]
卷期号:168: 112845-112845
标识
DOI:10.1016/j.inoche.2024.112845
摘要

This research focuses on the architectural design of the silica shell on Fe3O4 nanoparticle to precisely control and minimize its thickness, with the aim of achieving a final product with optimal saturation magnetization (Ms) for biomedical applications. A rapid and facile microwave-assisted synthesis method was developed for the synthesis of Fe3O4@SiO2 and Fe3O4@SiO2@NH2 core–shell nanoparticles with ultra-thin SiO2 shell and excellent magnetic performance. The distribution of particle size of the Fe3O4@SiO2 nanoparticles was found to be in the range of 15–35 nm, with a mean particle size of ∼ 21 nm. FTIR analysis also confirmed the successful silica coating on Fe3O4 nanoparticles and the successful amino-functionalization of silica-coated Fe3O4 nanoparticles. The Ms of Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@NH2 nanoparticles was found to be 64.4, 59.8, and 52.4 emu/g, respectively. It has been confirmed that that the ultra-thin SiO2 coating has a negligible effect on the magnetic characteristics of the nanoparticles. The developed microwave-assisted synthesis method in this study not only provides an interesting, rapid, and facile synthesis route but also results in a product with a narrow particle size distribution, an ultra-thin SiO2 shell, favorable magnetic properties, and improved cell compatibility which may be used in several different applications, particularly biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
luoqin完成签到 ,获得积分10
3秒前
4秒前
7秒前
慈祥的碧发布了新的文献求助10
8秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
9秒前
打野完成签到,获得积分10
9秒前
FashionBoy应助123采纳,获得10
10秒前
10秒前
共享精神应助军军问问张采纳,获得10
10秒前
春花发布了新的文献求助10
12秒前
Evander发布了新的文献求助20
13秒前
15秒前
Smilegate发布了新的文献求助10
15秒前
所所应助优美的明辉采纳,获得30
16秒前
ivy发布了新的文献求助10
20秒前
有机发布了新的文献求助20
20秒前
20秒前
46464发布了新的文献求助10
24秒前
闲鱼医生应助vivre223采纳,获得10
26秒前
孩子气完成签到,获得积分10
26秒前
123发布了新的文献求助10
27秒前
酷波er应助tlm采纳,获得10
28秒前
科研通AI5应助火龙果采纳,获得10
29秒前
30秒前
Aliya完成签到 ,获得积分10
31秒前
35秒前
刻苦剑封关注了科研通微信公众号
36秒前
37秒前
Jasper应助weiwei采纳,获得30
37秒前
思源应助点击获取采纳,获得10
40秒前
40秒前
tlm发布了新的文献求助10
40秒前
40秒前
奇迹男孩发布了新的文献求助10
41秒前
43秒前
卡卡西发布了新的文献求助10
43秒前
45秒前
有机发布了新的文献求助10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545043
求助须知:如何正确求助?哪些是违规求助? 3976862
关于积分的说明 12315203
捐赠科研通 3644985
什么是DOI,文献DOI怎么找? 2007296
邀请新用户注册赠送积分活动 1042900
科研通“疑难数据库(出版商)”最低求助积分说明 931746