Architecting ultra-thin SiO2 shell for high magnetic performance of Fe3O4 nanoparticles for biomedical applications

纳米技术 材料科学 纳米颗粒 壳体(结构) 磁性纳米粒子 复合材料
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Hossein Minouei,NULL AUTHOR_ID,Dae‐Eun Kim
出处
期刊:Inorganic Chemistry Communications [Elsevier BV]
卷期号:168: 112845-112845
标识
DOI:10.1016/j.inoche.2024.112845
摘要

This research focuses on the architectural design of the silica shell on Fe3O4 nanoparticle to precisely control and minimize its thickness, with the aim of achieving a final product with optimal saturation magnetization (Ms) for biomedical applications. A rapid and facile microwave-assisted synthesis method was developed for the synthesis of Fe3O4@SiO2 and Fe3O4@SiO2@NH2 core–shell nanoparticles with ultra-thin SiO2 shell and excellent magnetic performance. The distribution of particle size of the Fe3O4@SiO2 nanoparticles was found to be in the range of 15–35 nm, with a mean particle size of ∼ 21 nm. FTIR analysis also confirmed the successful silica coating on Fe3O4 nanoparticles and the successful amino-functionalization of silica-coated Fe3O4 nanoparticles. The Ms of Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@NH2 nanoparticles was found to be 64.4, 59.8, and 52.4 emu/g, respectively. It has been confirmed that that the ultra-thin SiO2 coating has a negligible effect on the magnetic characteristics of the nanoparticles. The developed microwave-assisted synthesis method in this study not only provides an interesting, rapid, and facile synthesis route but also results in a product with a narrow particle size distribution, an ultra-thin SiO2 shell, favorable magnetic properties, and improved cell compatibility which may be used in several different applications, particularly biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
英俊的铭应助可靠的寒风采纳,获得10
2秒前
3秒前
5秒前
ssk发布了新的文献求助10
6秒前
DrLee完成签到,获得积分10
6秒前
zyy完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
太阳发布了新的文献求助10
8秒前
VDC应助智者采纳,获得20
10秒前
彭于晏应助小分队采纳,获得10
11秒前
科研通AI2S应助细腻的山水采纳,获得10
11秒前
luoshikun发布了新的文献求助10
12秒前
12秒前
hhhhhhhh发布了新的文献求助10
12秒前
13秒前
15秒前
许昆完成签到,获得积分10
15秒前
充电宝应助winnerbing采纳,获得10
15秒前
zyy发布了新的文献求助10
15秒前
15秒前
清爽老九应助平常的子默采纳,获得20
16秒前
18秒前
18秒前
19秒前
勤奋鑫鹏发布了新的文献求助10
19秒前
胡桃桃发布了新的文献求助10
20秒前
今后应助一团小煤球采纳,获得10
21秒前
Akim应助芊慧采纳,获得10
21秒前
21秒前
22秒前
充电宝应助reojeong采纳,获得10
22秒前
研招发布了新的文献求助10
23秒前
可爱非笑发布了新的文献求助10
23秒前
24秒前
luoshikun完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672805
求助须知:如何正确求助?哪些是违规求助? 3228883
关于积分的说明 9782581
捐赠科研通 2939308
什么是DOI,文献DOI怎么找? 1610843
邀请新用户注册赠送积分活动 760758
科研通“疑难数据库(出版商)”最低求助积分说明 736203