HyperCARS: Using Hyperbolic Embeddings for Generating Hierarchical Contextual Situations in Context-Aware Recommender Systems

推荐系统 计算机科学 背景(考古学) 情报检索 人工智能 数据挖掘 理论计算机科学 历史 考古
作者
Konstantin Bauman,NULL AUTHOR_ID,NULL AUTHOR_ID
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/isre.2022.0202
摘要

Contextual situations, such as having dinner at a restaurant on Friday with the spouse, became a useful mechanism to represent context in context-aware recommender systems (CARS). Prior research has shown important advantages of using latent embedding representation approaches to model contextual information in the Euclidean space leading to better recommendations. However, these traditional approaches have major challenges with the construction of proper embeddings of hierarchical structures of contextual information, as well as with interpretations of the obtained representations. To address these problems, we propose the HyperCARS method that models hierarchical contextual situations in the latent hyperbolic space. HyperCARS combines hyperbolic embeddings with hierarchical clustering to construct contextual situations, which allows loose coupling of the contextual modeling component with recommendation algorithms and, therefore, provides flexibility to use a broad range of previously developed recommendation algorithms. We demonstrate empirically that HyperCARS better captures and interprets hierarchical contextual representations, leading to better context-aware recommendations. Because hyperbolic embeddings can also be used in many other applications besides CARS, we also propose the latent embeddings representation framework that systematically classifies prior work on embeddings and identifies novel research streams for hyperbolic embeddings across information systems applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
隐形曼青应助123采纳,获得10
4秒前
6秒前
研友_ndDGVn发布了新的文献求助20
11秒前
顾矜应助caq采纳,获得10
12秒前
12秒前
太阳雨完成签到 ,获得积分10
12秒前
zzz完成签到,获得积分10
13秒前
英姑应助干脆小饼干采纳,获得10
14秒前
学学发布了新的文献求助30
17秒前
18秒前
狸毛毛发布了新的文献求助10
21秒前
23秒前
不眠的人完成签到,获得积分10
23秒前
LN发布了新的文献求助10
24秒前
goblue完成签到,获得积分10
28秒前
等于几都行完成签到 ,获得积分10
28秒前
不配.应助卡戎529采纳,获得10
29秒前
32秒前
李总要发财小苏发文章完成签到,获得积分10
32秒前
36秒前
心灵美的毛巾完成签到,获得积分20
39秒前
本草石之寒温完成签到 ,获得积分10
41秒前
慕青应助科研通管家采纳,获得10
41秒前
英俊的铭应助科研通管家采纳,获得10
41秒前
SciGPT应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
CodeCraft应助科研通管家采纳,获得10
41秒前
Lucas应助科研通管家采纳,获得10
41秒前
务实饼干应助科研通管家采纳,获得10
41秒前
44秒前
小红书求接接接接一篇完成签到,获得积分10
45秒前
47秒前
48秒前
50秒前
bkagyin应助忆之采纳,获得10
51秒前
情怀应助孤僻采纳,获得10
51秒前
52秒前
zxdnbb发布了新的文献求助10
53秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079