HyperCARS: Using Hyperbolic Embeddings for Generating Hierarchical Contextual Situations in Context-Aware Recommender Systems

推荐系统 计算机科学 背景(考古学) 情报检索 人工智能 数据挖掘 理论计算机科学 历史 考古
作者
Konstantin Bauman,Alexander Tuzhilin,Moshe Unger
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/isre.2022.0202
摘要

Contextual situations, such as having dinner at a restaurant on Friday with the spouse, became a useful mechanism to represent context in context-aware recommender systems (CARS). Prior research has shown important advantages of using latent embedding representation approaches to model contextual information in the Euclidean space leading to better recommendations. However, these traditional approaches have major challenges with the construction of proper embeddings of hierarchical structures of contextual information, as well as with interpretations of the obtained representations. To address these problems, we propose the HyperCARS method that models hierarchical contextual situations in the latent hyperbolic space. HyperCARS combines hyperbolic embeddings with hierarchical clustering to construct contextual situations, which allows loose coupling of the contextual modeling component with recommendation algorithms and, therefore, provides flexibility to use a broad range of previously developed recommendation algorithms. We demonstrate empirically that HyperCARS better captures and interprets hierarchical contextual representations, leading to better context-aware recommendations. Because hyperbolic embeddings can also be used in many other applications besides CARS, we also propose the latent embeddings representation framework that systematically classifies prior work on embeddings and identifies novel research streams for hyperbolic embeddings across information systems applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助10
3秒前
4秒前
2568269431完成签到 ,获得积分10
4秒前
5秒前
5秒前
灵巧剑心发布了新的文献求助10
6秒前
踏实的熠彤完成签到,获得积分10
6秒前
sun完成签到,获得积分10
6秒前
7秒前
xiajiahao发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
车梓银完成签到 ,获得积分10
10秒前
科研通AI6应助Alanni采纳,获得10
10秒前
无限绮南发布了新的文献求助10
12秒前
12秒前
12秒前
JamesPei应助灵巧剑心采纳,获得10
13秒前
17秒前
18秒前
18秒前
Tree_QD完成签到 ,获得积分10
20秒前
标致的无极完成签到,获得积分20
20秒前
ajjdnd发布了新的文献求助10
22秒前
李洁发布了新的文献求助30
22秒前
干净寻冬应助科研通管家采纳,获得10
23秒前
ATIHSA88应助科研通管家采纳,获得10
23秒前
坦率灵槐应助科研通管家采纳,获得10
23秒前
AneyWinter66应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
24秒前
ATIHSA88应助科研通管家采纳,获得10
24秒前
24秒前
AneyWinter66应助科研通管家采纳,获得10
24秒前
xu应助科研通管家采纳,获得50
24秒前
坦率灵槐应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995