HyperCARS: Using Hyperbolic Embeddings for Generating Hierarchical Contextual Situations in Context-Aware Recommender Systems

推荐系统 计算机科学 背景(考古学) 情报检索 人工智能 数据挖掘 理论计算机科学 历史 考古
作者
Konstantin Bauman,Alexander Tuzhilin,Moshe Unger
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/isre.2022.0202
摘要

Contextual situations, such as having dinner at a restaurant on Friday with the spouse, became a useful mechanism to represent context in context-aware recommender systems (CARS). Prior research has shown important advantages of using latent embedding representation approaches to model contextual information in the Euclidean space leading to better recommendations. However, these traditional approaches have major challenges with the construction of proper embeddings of hierarchical structures of contextual information, as well as with interpretations of the obtained representations. To address these problems, we propose the HyperCARS method that models hierarchical contextual situations in the latent hyperbolic space. HyperCARS combines hyperbolic embeddings with hierarchical clustering to construct contextual situations, which allows loose coupling of the contextual modeling component with recommendation algorithms and, therefore, provides flexibility to use a broad range of previously developed recommendation algorithms. We demonstrate empirically that HyperCARS better captures and interprets hierarchical contextual representations, leading to better context-aware recommendations. Because hyperbolic embeddings can also be used in many other applications besides CARS, we also propose the latent embeddings representation framework that systematically classifies prior work on embeddings and identifies novel research streams for hyperbolic embeddings across information systems applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ccc发布了新的文献求助10
1秒前
小红花完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
爱笑舞蹈完成签到,获得积分10
3秒前
爆米花应助幽默的依瑶采纳,获得10
3秒前
hyd1640完成签到,获得积分10
4秒前
信号灯发布了新的文献求助10
4秒前
4秒前
明理以南完成签到,获得积分10
5秒前
称心雁凡完成签到,获得积分10
5秒前
李沐阳完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
小马甲应助Lilac采纳,获得10
7秒前
六尺巷发布了新的文献求助10
8秒前
考拉发布了新的文献求助10
8秒前
NexusExplorer应助专一的饼干采纳,获得10
8秒前
8秒前
奥特斌完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
清辉月凝发布了新的文献求助10
10秒前
单薄茗发布了新的文献求助10
10秒前
10秒前
jiannanwu完成签到,获得积分10
11秒前
结实的白羊完成签到,获得积分10
11秒前
12秒前
汉堡包应助奥特斌采纳,获得10
12秒前
13秒前
酷炫的__完成签到,获得积分10
13秒前
ht完成签到,获得积分10
13秒前
英勇的安柏完成签到,获得积分10
13秒前
121212发布了新的文献求助10
13秒前
是个宝耶完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458