HyperCARS: Using Hyperbolic Embeddings for Generating Hierarchical Contextual Situations in Context-Aware Recommender Systems

推荐系统 计算机科学 背景(考古学) 情报检索 人工智能 数据挖掘 理论计算机科学 历史 考古
作者
Konstantin Bauman,Alexander Tuzhilin,Moshe Unger
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/isre.2022.0202
摘要

Contextual situations, such as having dinner at a restaurant on Friday with the spouse, became a useful mechanism to represent context in context-aware recommender systems (CARS). Prior research has shown important advantages of using latent embedding representation approaches to model contextual information in the Euclidean space leading to better recommendations. However, these traditional approaches have major challenges with the construction of proper embeddings of hierarchical structures of contextual information, as well as with interpretations of the obtained representations. To address these problems, we propose the HyperCARS method that models hierarchical contextual situations in the latent hyperbolic space. HyperCARS combines hyperbolic embeddings with hierarchical clustering to construct contextual situations, which allows loose coupling of the contextual modeling component with recommendation algorithms and, therefore, provides flexibility to use a broad range of previously developed recommendation algorithms. We demonstrate empirically that HyperCARS better captures and interprets hierarchical contextual representations, leading to better context-aware recommendations. Because hyperbolic embeddings can also be used in many other applications besides CARS, we also propose the latent embeddings representation framework that systematically classifies prior work on embeddings and identifies novel research streams for hyperbolic embeddings across information systems applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zc发布了新的文献求助10
刚刚
研友_VZG7GZ应助十字勋章采纳,获得10
1秒前
1秒前
花花发布了新的文献求助10
1秒前
Jing完成签到,获得积分10
1秒前
1秒前
一挖一麻袋完成签到,获得积分10
2秒前
赘婿应助科研顺利采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助JH采纳,获得10
3秒前
贺兰完成签到,获得积分10
3秒前
无极微光应助Honahlee采纳,获得20
3秒前
wangshibing发布了新的文献求助10
3秒前
xtinee发布了新的文献求助10
3秒前
彩虹糖完成签到,获得积分10
3秒前
andy-law完成签到,获得积分10
4秒前
KJ发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
52251013106发布了新的文献求助10
5秒前
传奇3应助lxy采纳,获得10
6秒前
6秒前
6秒前
黄兆强完成签到 ,获得积分10
6秒前
WuYixiao1012发布了新的文献求助10
7秒前
huang完成签到,获得积分10
7秒前
李健的粉丝团团长应助yrr采纳,获得10
7秒前
7秒前
LC完成签到,获得积分10
7秒前
浆果肉丸发布了新的文献求助50
8秒前
不安平蓝羽完成签到,获得积分10
8秒前
独角兽先生完成签到 ,获得积分10
8秒前
Owen应助kanohola采纳,获得30
8秒前
迷途羔羊完成签到,获得积分10
8秒前
冷酷的天宇完成签到,获得积分10
8秒前
lizhiqian2024发布了新的文献求助10
9秒前
坚强觅珍完成签到 ,获得积分10
9秒前
jiangnan应助默默善愁采纳,获得10
10秒前
10秒前
伟大毕业旅程完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418