HyperCARS: Using Hyperbolic Embeddings for Generating Hierarchical Contextual Situations in Context-Aware Recommender Systems

推荐系统 计算机科学 背景(考古学) 情报检索 人工智能 数据挖掘 理论计算机科学 历史 考古
作者
Konstantin Bauman,Alexander Tuzhilin,Moshe Unger
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/isre.2022.0202
摘要

Contextual situations, such as having dinner at a restaurant on Friday with the spouse, became a useful mechanism to represent context in context-aware recommender systems (CARS). Prior research has shown important advantages of using latent embedding representation approaches to model contextual information in the Euclidean space leading to better recommendations. However, these traditional approaches have major challenges with the construction of proper embeddings of hierarchical structures of contextual information, as well as with interpretations of the obtained representations. To address these problems, we propose the HyperCARS method that models hierarchical contextual situations in the latent hyperbolic space. HyperCARS combines hyperbolic embeddings with hierarchical clustering to construct contextual situations, which allows loose coupling of the contextual modeling component with recommendation algorithms and, therefore, provides flexibility to use a broad range of previously developed recommendation algorithms. We demonstrate empirically that HyperCARS better captures and interprets hierarchical contextual representations, leading to better context-aware recommendations. Because hyperbolic embeddings can also be used in many other applications besides CARS, we also propose the latent embeddings representation framework that systematically classifies prior work on embeddings and identifies novel research streams for hyperbolic embeddings across information systems applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sen完成签到 ,获得积分10
刚刚
平常亦凝发布了新的文献求助10
刚刚
机智一曲完成签到 ,获得积分10
1秒前
1秒前
1秒前
讲座梅郎完成签到,获得积分10
2秒前
贵贵完成签到,获得积分10
2秒前
3秒前
852应助花仙子采纳,获得10
3秒前
迷你的迎南完成签到,获得积分10
3秒前
SYY发布了新的文献求助10
4秒前
panpanpan完成签到,获得积分10
4秒前
5秒前
5秒前
我又可以了完成签到,获得积分10
6秒前
FashionBoy应助LY采纳,获得10
6秒前
6秒前
7秒前
zlsuen完成签到,获得积分20
7秒前
7秒前
务实颜完成签到 ,获得积分10
7秒前
丘比特应助WWD采纳,获得10
7秒前
Star1983发布了新的文献求助10
8秒前
科研公主完成签到,获得积分10
8秒前
8秒前
我是海盗完成签到,获得积分10
8秒前
cheryl完成签到,获得积分10
8秒前
8秒前
平常亦凝完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
long完成签到,获得积分20
9秒前
唠叨的似狮完成签到,获得积分20
12秒前
12秒前
eddie完成签到,获得积分10
14秒前
14秒前
李爱国应助十六采纳,获得10
14秒前
豆杀包完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582