The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform

基诺美 仿形(计算机编程) 计算机科学 深度学习 人工智能 选择性 化学 计算生物学 基因 生物 生物化学 程序设计语言 催化作用
作者
Wei Ma,Jia Hu,Zhuangzhi Chen,Yaoqin Ai,Yihang Zhang,Keke Dong,Xiangfei Meng,Liu Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c00595
摘要

Characterizing the kinome selectivity profiles of kinase inhibitors is essential in the early stages of novel small-molecule drug discovery. This characterization is critical for interpreting potential adverse events caused by off-target polypharmacology effects and provides unique pharmacological insights for drug repurposing development of existing kinase inhibitor drugs. However, experimental profiling of whole kinome selectivity is still time-consuming and resource-demanding. Here, we report a deep learning classification model using an in-house built data set of inhibitors against 191 well-representative kinases constructed based on a novel strategy by systematically cleaning and integrating six public data sets. This model, a multitask deep neural network, predicts the kinome selectivity profiles of compounds with novel structures. The model demonstrates excellent predictive performance, with auROC, prc-AUC, Accuracy, and Binary_cross_entropy of 0.95, 0.92, 0.90, and 0.37, respectively. It also performs well in a priori testing for inhibitors targeting different categories of proteins from internal compound collections, significantly improving over similar models on data sets from practical application scenarios. Integrated to subsequent machine learning-enhanced virtual screening workflow, novel CDK2 kinase inhibitors with potent kinase inhibitory activity and excellent kinome selectivity profiles are successfully identified. Additionally, we developed a free online web server, KinomePro-DL, to predict the kinome selectivity profiles and kinome-wide polypharmacology effects of small molecules (available on kinomepro-dl.pharmablock.com). Uniquely, our model allows users to quickly fine-tune it with their own training data sets, enhancing both prediction accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sqk完成签到,获得积分10
1秒前
Hello应助xiaoblue采纳,获得30
1秒前
yjf完成签到,获得积分10
1秒前
3秒前
jiujiuwo完成签到,获得积分10
4秒前
我wwww发布了新的文献求助20
6秒前
James发布了新的文献求助10
7秒前
7秒前
窗外落霞完成签到,获得积分10
10秒前
美丽晓蓝发布了新的文献求助10
11秒前
13秒前
深夜诗人完成签到,获得积分10
13秒前
WC241002292发布了新的文献求助10
13秒前
螳螂腿子完成签到,获得积分10
14秒前
孑孑完成签到,获得积分20
14秒前
14秒前
我是老大应助我wwww采纳,获得10
14秒前
16秒前
Akim应助贺呵呵采纳,获得10
16秒前
阿托品发布了新的文献求助10
17秒前
Loooong完成签到,获得积分0
17秒前
yar完成签到 ,获得积分10
17秒前
James完成签到,获得积分20
19秒前
水深三英尺完成签到,获得积分10
19秒前
自由天抒完成签到,获得积分10
20秒前
21秒前
fanny完成签到 ,获得积分10
21秒前
dfswf完成签到 ,获得积分10
22秒前
23秒前
23秒前
liudiqiu给liuhe的求助进行了留言
23秒前
wanci应助QIQI采纳,获得10
26秒前
俺村俺最牛完成签到,获得积分10
26秒前
温暖的涵易应助千纸鹤采纳,获得20
27秒前
大模型应助远在天边采纳,获得10
28秒前
大白发布了新的文献求助10
29秒前
孑孑发布了新的文献求助10
29秒前
贺呵呵发布了新的文献求助10
29秒前
阿航完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540746
求助须知:如何正确求助?哪些是违规求助? 3117999
关于积分的说明 9333534
捐赠科研通 2815888
什么是DOI,文献DOI怎么找? 1547832
邀请新用户注册赠送积分活动 721175
科研通“疑难数据库(出版商)”最低求助积分说明 712578