化学
降级(电信)
癌症
蛋白质降解
癌症治疗
癌症研究
生物化学
内科学
医学
电信
计算机科学
生物
作者
Xucong Teng,Xuan Zhao,Yicong Dai,Xiangdong Zhang,Qiushuang Zhang,Yuncong Wu,Difei Hu,Jinghong Li
摘要
Proteolysis-targeting chimeras (PROTACs) show promise in tumor treatment. However, the E3 ligases VHL and CRBN, commonly used in PROTAC, are highly expressed in only a few tumors, thus limiting the application scope and efficacy of PROTAC drugs. Furthermore, the lack of tumor specificity in PROTAC drugs can result in toxic side effects. Therefore, there is an urgent need to develop tumor-selective PROTAC drugs that do not rely on endogenous E3 ligases. In this study, we introduce the ClickRNA-PROTAC system, which involves the expression of a fusion protein of the E3 ubiquitin ligase SIAH1 and SNAPTag through mRNA transfection and recruits the protein of interest (POI) using bio-orthogonal click chemistry. ClickRNA-PROTAC can effectively degrade various proteins such as BRD4, KRAS, and NFκB simply by replacing the warhead molecules. By employing a tumor-specific mRNA-responsive translation strategy, ClickRNA-PROTAC can selectively degrade POIs in tumor cells. Furthermore, ClickRNA-PROTAC demonstrated strong efficacy in targeted cancer therapy in a xenograft mouse model of adrenocortical carcinoma. In conclusion, this approach offers several advantages, including independence from endogenous E3 ubiquitin ligases, tumor specificity, and programmability, thereby paving the way for the development of PROTAC drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI