膳食纤维
粒径
纤维
化学
食品科学
粒子(生态学)
有机化学
生物
生态学
物理化学
作者
Yujing Sun,Chunyan Li,Wu Li,Gaoke Li,Tao Zhang,Ming Miao
标识
DOI:10.1016/j.ijbiomac.2024.136044
摘要
Milling and sieving were applied to modify corn-derived cell wall dietary fiber-phenolic acid complexes (CWDFPC) to enhance their functionality and gut fermentability. The physicochemical properties of three modified CWDFPCs (CWDFPC-M1, CWDFPC-M2, and CWDFPC-M3) were characterized, showing changes in particle size (430-73.55 μm) and bulk density (0.29-0.57 g/mL). Sieving altered the composition, with CWDFPC-M1 and CWDFPC-M3 exhibiting higher bound phenolic contents than CWDFPC-M2. Increased water holding capacity indicated improved functionalities. Modified CWDFPCs exhibited a 4-fold increase in glucose adsorption capacity, higher phenolic acid release during gastrointestinal digestion in vitro, and a greater proportion of short-chain fatty acids in fecal fermentation in vitro. Hemicellulose from CWDFPC-M3 was primarily composed of →4)-β-Xylp-(1→ and →3)-β-Xylp-(1→, and →3,4)-β-Xylp-(1→, with branches possibly including →5)-α-Araf-(1→ and →3)-α-Araf-(1→ units. These modifications highlight the potential of milling and sieving to convert CWDFPCs into valuable functional food ingredients.
科研通智能强力驱动
Strongly Powered by AbleSci AI