Pattern Recognition of Alkaloids by Inhibiting the Catalytic Activity of Dopzymes for Dopamine

化学 多巴胺 催化作用 神经科学 生物化学 心理学
作者
Jing Zhu,Qing Hong Zhang,Wen Wu Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c01920
摘要

Exploiting the specific recognition probe for all of the biomolecules is difficult in "lock-and-key" biosensors. The cross-reaction or the semispecific probe in pattern recognition mode is an alternative strategy through extracting a multidimensional signal array from recognition elements. Here, we design a pattern recognition sensor array based on the alkaloid-inhibited catalytic activity of dopzymes for the discrimination and determination of six alkaloids. In this sensor array, three different G-rich sequences, i.e., G-triplex (G3), G-quadruplex (GQ1), and the G-quadruplex dimer (2GQ1) possessing various peroxidase activities, conjugated with a dopamine aptamer and the dopzymes (G3-d-apt, GQ1-d-apt, and 2GQ1-d-apt) were obtained with an enhanced catalytic performance for the substrate. Through the interactions between six target alkaloids and G3, GQ1, and 2GQ1 regions, the pattern signal (6 alkaloids × 3 dopzymes × 5 replicates) was obtained from the diverse inhibited effect for the dopzyme activity. In virtue of the statistical method principal component analysis (PCA), the data array was projected into a new dimensional space to acquire the three-dimensional (3D) canonical scores and grouped into their respective clusters. The sensor array exhibited an outstanding discrimination and classification capability for six alkaloids with different concentrations with 100% accuracy. In addition, the nonspecific recognition elements of the sensor array showed high selectivity even though other alkaloids with similar structures to targets existed in the samples. Importantly, the levels of the six targets can be analyzed by the most influential discrimination factor, which represented the vector with the highest variance, evidencing that the sensor array has potential in drug screening and clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵夏完成签到,获得积分10
1秒前
郑荻凡发布了新的文献求助10
1秒前
大气沅发布了新的文献求助10
1秒前
榴莲咖啡发布了新的文献求助30
2秒前
CWT完成签到,获得积分10
2秒前
ztlooo完成签到,获得积分10
3秒前
领导范儿应助搬砖采纳,获得10
3秒前
JamesPei应助小小小采纳,获得10
3秒前
风中的善愁完成签到,获得积分10
3秒前
姜丝炒土豆丝完成签到,获得积分10
4秒前
5秒前
小马完成签到,获得积分10
5秒前
qwer完成签到,获得积分10
5秒前
yu发布了新的文献求助10
5秒前
zengyan完成签到 ,获得积分10
5秒前
粑粑发布了新的文献求助10
6秒前
sniper111完成签到,获得积分10
6秒前
NMSL发布了新的文献求助10
6秒前
6秒前
满意的元芹完成签到,获得积分10
7秒前
完美世界应助北欧海盗采纳,获得10
7秒前
小吴完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
77完成签到,获得积分10
9秒前
Raylihuang完成签到,获得积分10
10秒前
清脆野狼发布了新的文献求助10
11秒前
泡沫完成签到,获得积分10
11秒前
Jasper应助田小姐采纳,获得10
11秒前
12秒前
难过机器猫完成签到,获得积分20
12秒前
叶亦云完成签到,获得积分10
13秒前
SQSO完成签到,获得积分20
13秒前
陈雅玲完成签到 ,获得积分10
13秒前
Stars完成签到,获得积分10
13秒前
直率的乐萱完成签到 ,获得积分10
14秒前
cc完成签到 ,获得积分20
15秒前
16秒前
赵小超完成签到,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257400
求助须知:如何正确求助?哪些是违规求助? 2899333
关于积分的说明 8305202
捐赠科研通 2568637
什么是DOI,文献DOI怎么找? 1395187
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630755