Development of a major amputation prediction model and nomogram in patients with diabetic foot

医学 列线图 截肢 糖尿病足 脚(韵律) 糖尿病 外科 生物信息学 内科学 内分泌学 语言学 哲学 生物
作者
Yi Chen,Jun Zhuang,Caizhe Yang
出处
期刊:Postgraduate Medical Journal [BMJ]
卷期号:100 (1190): 908-916 被引量:2
标识
DOI:10.1093/postmj/qgae087
摘要

Diabetes mellitus, as one of the world's fastest-growing diseases, is a chronic metabolic disease that has now become a public health problem worldwide. The purpose of this research was to develop a predictive nomogram model to demonstrate the risk of major amputation in patients with diabetic foot. A total of 634 Type 2 Diabetes Mellitus (T2DM) patients with diabetic foot ulcer hospitalized at the Air Force Medical Center between January 2018 and December 2023 were included in our retrospective study. There were 468 males (73.82%) and 166 females (26.18%) with an average age of 61.64 ± 11.27 years and average body mass index of 24.45 ± 3.56 kg/m2. The predictive factors were evaluated by single factor logistic regression and multiple logistic regression and the predictive nomogram was established with these features. Receiver operating characteristic (subject working characteristic curve) and their area under the curve, calibration curve, and decision curve analysis of this major amputation nomogram were assessed. Model validation was performed by the internal validation set, and the receiver operating characteristic curve, calibration curve, and decision curve analysis were used to further evaluate the nomogram model performance and clinical usefulness. Predictors contained in this predictive model included body mass index, ulcer sites, hemoglobin, neutrophil-to-lymphocyte ratio, blood uric acid (BUA), and ejection fraction. Good discrimination with a C-index of 0.957 (95% CI, 0.931-0.983) in the training group and a C-index of 0.987 (95% CI, 0.969-1.000) in the validation cohort were showed with this predictive model. Good calibration were displayed. The decision curve analysis showed that using the nomogram prediction model in the training cohort and validation cohort would respectively have clinical benefits. This new nomogram incorporating body mass index, ulcer sites, hemoglobin, neutrophil-to-lymphocyte ratio, BUA, and ejection fraction has good accuracy and good predictive value for predicting the risk of major amputation in patients with diabetic foot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重书双发布了新的文献求助10
刚刚
英俊牛排发布了新的文献求助10
刚刚
华仔应助yuan采纳,获得10
刚刚
Simplefy完成签到,获得积分20
1秒前
1秒前
1秒前
陆拾荒完成签到,获得积分10
1秒前
聪明摩托发布了新的文献求助10
2秒前
科研通AI5应助粘粘纸采纳,获得10
2秒前
啾啾咪咪发布了新的文献求助10
2秒前
搜集达人应助墨之默采纳,获得10
3秒前
5秒前
书生发布了新的文献求助20
5秒前
sjh完成签到,获得积分10
6秒前
lilioa85完成签到,获得积分10
6秒前
6秒前
yyy完成签到,获得积分10
7秒前
NexusExplorer应助wwww采纳,获得10
7秒前
7秒前
7秒前
Simplefy发布了新的文献求助10
7秒前
老实续发布了新的文献求助10
8秒前
8秒前
xuan完成签到,获得积分10
9秒前
英俊牛排完成签到,获得积分10
9秒前
10秒前
温酒随行发布了新的文献求助10
10秒前
赤兔发布了新的文献求助10
10秒前
沉默的云朵完成签到,获得积分10
10秒前
小马甲应助珍惜采纳,获得10
10秒前
好困发布了新的文献求助10
11秒前
Nyxia发布了新的文献求助10
11秒前
12秒前
白秋雪完成签到,获得积分10
12秒前
13秒前
Jally发布了新的文献求助10
13秒前
13秒前
可乐完成签到,获得积分20
13秒前
跳跃凡桃发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246