Green pepper fruits counting based on improved DeepSort and optimized Yolov5s

胡椒粉 园艺 生物 植物 数学
作者
Pengcheng Du,Shang Chen,Xu Li,Wenwu Hu,Nan Lan,Xiangming Lei,Yang Xiang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1417682
摘要

Green pepper yield estimation is crucial for establishing harvest and storage strategies. This paper proposes an automatic counting method for green pepper fruits based on object detection and multi-object tracking algorithm. Green pepper fruits have colors similar to leaves and are often occluded by each other, posing challenges for detection. Based on the YOLOv5s, the CS_YOLOv5s model is specifically designed for green pepper fruit detection. In the CS_YOLOv5s model, a Slim-Nick combined with GSConv structure is utilized in the Neck to reduce model parameters while enhancing detection speed. Additionally, the CBAM attention mechanism is integrated into the Neck to enhance the feature perception of green peppers at various locations and enhance the feature extraction capabilities of the model. According to the test results, the CS_YOLOv5s model of mAP, Precision and Recall, and Detection time of a single image are 98.96%, 95%, 97.3%, and 6.3 ms respectively. Compared to the YOLOv5s model, the Detection time of a single image is reduced by 34.4%, while Recall and mAP values are improved. Additionally, for green pepper fruit tracking, this paper combines appearance matching algorithms and track optimization algorithms from SportsTrack to optimize the DeepSort algorithm. Considering three different scenarios of tracking, the MOTA and MOTP are stable, but the ID switch is reduced by 29.41%. Based on the CS_YOLOv5s model, the counting performance before and after DeepSort optimization is compared. For green pepper counting in videos, the optimized DeepSort algorithm achieves ACP (Average Counting Precision), MAE (Mean Absolute Error), and RMSE (Root Mean Squared Error) values of 95.33%, 3.33, and 3.74, respectively. Compared to the original algorithm, ACP increases by 7.2%, while MAE and RMSE decrease by 6.67 and 6.94, respectively. Additionally, Based on the optimized DeepSort, the fruit counting results using YOLOv5s model and CS_YOLOv5s model were compared, and the results show that using the better object detector CS_YOLOv5s has better counting accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助王小志采纳,获得10
5秒前
yyy完成签到,获得积分10
6秒前
Kishi完成签到,获得积分10
7秒前
科研通AI5应助冷傲雨寒采纳,获得10
7秒前
Catfish完成签到,获得积分10
10秒前
务实紫雪发布了新的文献求助10
10秒前
iwaking完成签到,获得积分10
10秒前
Tayzon完成签到,获得积分10
11秒前
默默柚子完成签到,获得积分10
11秒前
甜橙汁完成签到,获得积分10
11秒前
谦让碧菡完成签到,获得积分10
11秒前
董绮敏完成签到 ,获得积分10
13秒前
風來完成签到,获得积分10
14秒前
16秒前
17秒前
17秒前
xinyi完成签到,获得积分10
17秒前
研友_Lw4Ngn完成签到,获得积分10
17秒前
17秒前
19秒前
元谷雪发布了新的文献求助30
19秒前
20秒前
syh发布了新的文献求助20
20秒前
shunbao完成签到,获得积分10
20秒前
可爱的函函应助哈哈采纳,获得10
21秒前
21秒前
21秒前
22秒前
22秒前
冷傲雨寒发布了新的文献求助10
23秒前
上官若男应助科研小民工采纳,获得20
23秒前
丁丁完成签到 ,获得积分20
25秒前
25秒前
26秒前
无私映萱完成签到 ,获得积分10
26秒前
shunbaopan完成签到,获得积分10
27秒前
GanGanGanGan发布了新的文献求助10
27秒前
salmonella完成签到,获得积分10
27秒前
28秒前
七叶树完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668047
求助须知:如何正确求助?哪些是违规求助? 3226494
关于积分的说明 9769640
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608519
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460