Influence of Monitoring Time on Rockfall Magnitude-Frequency Uncertainty

震级(天文学) 落石 计算机科学 地质学 地震学 物理 山崩 天文
作者
Christine B. Phillips,Gabriel Walton
标识
DOI:10.56952/arma-2024-0527
摘要

ABSTRACT: Rockfall along mountainous roadways poses a hazard to transportation infrastructure, commercial traffic, and the public. Lidar scanning and photogrammetry are powerful tools to create high-resolution point cloud models of rock slopes and quantify change, facilitating rockfall volume estimation. The empirical magnitude-cumulative frequency (MCF) distribution of rockfall defines the number of rockfalls of various sizes that occur for a certain study area over a given period of time. The time required for the MCF curve fit parameters to stabilize varies for different slopes depending on source area size and rockfall frequency. Four Colorado rock slopes with remote-sensing-based rockfall inventories were studied to determine the typical length of monitoring necessary to produce an MCF power law that accurately reflects long-term slope rockfall activity. Bootstrapped confidence intervals on the MCF fit parameters were used to quantify the power law variability for each slope over time (as additional monitoring periods are added) and with the sequential addition of rockfalls to the database. The results of this research include guidelines for minimum rock slope monitoring time and database size to accurately constrain the rockfall magnitude-frequency relationship. 1. INTRODUCTION Empirical distribution fitting is commonly used to model natural, difficult to predict phenomena in the geosciences. Many natural processes follow an empirical power-law to describe the relative frequency of their size or energy over a certain range, including earthquakes, forest fires, landslides, rockfall, and volcanic eruptions (Corral & González, 2019). In rockfall hazard analysis, an inverse relationship of decreasing rockfall frequency with increasing size has been consistently observed from rockfall records (Benjamin et al., 2020; Guerin et al., 2020). A power law model fit to this magnitude-frequency distribution is commonly used to predict the exceedance probability of a given rockfall volume (Dussauge-Pessier et al., 2002; Graber & Santi, 2022; Hungr et al., 1999; Janeras et al., 2023). Use of this model as a predictive tool is dependent on the accuracy and completeness of the rockfall inventory used to define the power law.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大饼完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
Gabriel完成签到,获得积分10
3秒前
123456完成签到 ,获得积分10
4秒前
天真依玉完成签到,获得积分10
5秒前
Cyber_relic完成签到,获得积分10
10秒前
Horizon完成签到 ,获得积分10
14秒前
伶俐海安完成签到 ,获得积分10
14秒前
15秒前
酱紫完成签到 ,获得积分10
15秒前
手可摘棉花完成签到,获得积分10
16秒前
Vaseegara完成签到 ,获得积分10
16秒前
17秒前
舒服的初蓝完成签到,获得积分10
18秒前
亮总完成签到 ,获得积分10
19秒前
yinlao完成签到,获得积分0
19秒前
忍冬完成签到,获得积分10
22秒前
SuYan完成签到 ,获得积分10
23秒前
Huang完成签到 ,获得积分0
24秒前
25秒前
25秒前
UniTTEC9560完成签到,获得积分10
25秒前
小文完成签到,获得积分10
26秒前
飘逸初夏完成签到,获得积分20
27秒前
11111111111111完成签到,获得积分10
29秒前
飘逸初夏发布了新的文献求助10
30秒前
lixoii完成签到 ,获得积分10
32秒前
暴躁的橘子完成签到 ,获得积分10
33秒前
35秒前
36秒前
奥丁不言语完成签到 ,获得积分10
36秒前
隐形的语海完成签到,获得积分10
36秒前
36秒前
Connor完成签到,获得积分10
36秒前
橘子味完成签到 ,获得积分10
38秒前
curiosity发布了新的文献求助10
39秒前
餐巾纸完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603500
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854100
捐赠科研通 4693213
什么是DOI,文献DOI怎么找? 2540784
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806