Influence of Monitoring Time on Rockfall Magnitude-Frequency Uncertainty

震级(天文学) 落石 计算机科学 地质学 地震学 物理 山崩 天文
作者
Christine B. Phillips,Gabriel Walton
标识
DOI:10.56952/arma-2024-0527
摘要

ABSTRACT: Rockfall along mountainous roadways poses a hazard to transportation infrastructure, commercial traffic, and the public. Lidar scanning and photogrammetry are powerful tools to create high-resolution point cloud models of rock slopes and quantify change, facilitating rockfall volume estimation. The empirical magnitude-cumulative frequency (MCF) distribution of rockfall defines the number of rockfalls of various sizes that occur for a certain study area over a given period of time. The time required for the MCF curve fit parameters to stabilize varies for different slopes depending on source area size and rockfall frequency. Four Colorado rock slopes with remote-sensing-based rockfall inventories were studied to determine the typical length of monitoring necessary to produce an MCF power law that accurately reflects long-term slope rockfall activity. Bootstrapped confidence intervals on the MCF fit parameters were used to quantify the power law variability for each slope over time (as additional monitoring periods are added) and with the sequential addition of rockfalls to the database. The results of this research include guidelines for minimum rock slope monitoring time and database size to accurately constrain the rockfall magnitude-frequency relationship. 1. INTRODUCTION Empirical distribution fitting is commonly used to model natural, difficult to predict phenomena in the geosciences. Many natural processes follow an empirical power-law to describe the relative frequency of their size or energy over a certain range, including earthquakes, forest fires, landslides, rockfall, and volcanic eruptions (Corral & González, 2019). In rockfall hazard analysis, an inverse relationship of decreasing rockfall frequency with increasing size has been consistently observed from rockfall records (Benjamin et al., 2020; Guerin et al., 2020). A power law model fit to this magnitude-frequency distribution is commonly used to predict the exceedance probability of a given rockfall volume (Dussauge-Pessier et al., 2002; Graber & Santi, 2022; Hungr et al., 1999; Janeras et al., 2023). Use of this model as a predictive tool is dependent on the accuracy and completeness of the rockfall inventory used to define the power law.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lasse发布了新的文献求助10
1秒前
眯眯眼的宛白完成签到,获得积分20
3秒前
5秒前
我崽了你发布了新的文献求助30
6秒前
7秒前
fanf完成签到,获得积分10
8秒前
完美世界应助mayun95采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
ashin17发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助cxw采纳,获得10
14秒前
14秒前
呼噜呼噜毛完成签到 ,获得积分10
16秒前
16秒前
烟花应助QinQin采纳,获得10
16秒前
JamesPei应助猪猪hero采纳,获得10
17秒前
17秒前
18秒前
黄颖完成签到,获得积分10
18秒前
20秒前
21秒前
CodeCraft应助Nora采纳,获得10
22秒前
灵巧帽子发布了新的文献求助20
23秒前
小吴同学发布了新的文献求助10
25秒前
黄芪2号完成签到,获得积分10
25秒前
25秒前
25秒前
Jes完成签到,获得积分10
26秒前
凶狠的棒棒糖关注了科研通微信公众号
26秒前
谦让雨柏完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
黄芪2号发布了新的文献求助10
28秒前
微笑翠桃发布了新的文献求助10
29秒前
浅蓝色的盛夏完成签到 ,获得积分10
30秒前
wen完成签到,获得积分10
30秒前
张123完成签到,获得积分10
32秒前
古月完成签到,获得积分10
32秒前
Cristina2024完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716