Fast and scalable ensemble learning method for versatile polygenic risk prediction

集成学习 多基因风险评分 计算机科学 可扩展性 机器学习 人工智能 生物 遗传学 基因 数据库 基因型 单核苷酸多态性
作者
Tony Chen,Haoyu Zhang,Rahul Mazumder,Xihong Lin
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (33)
标识
DOI:10.1073/pnas.2403210121
摘要

Polygenic risk scores (PRS) enhance population risk stratification and advance personalized medicine, but existing methods face several limitations, encompassing issues related to computational burden, predictive accuracy, and adaptability to a wide range of genetic architectures. To address these issues, we propose Aggregated L0Learn using Summary-level data (ALL-Sum), a fast and scalable ensemble learning method for computing PRS using summary statistics from genome-wide association studies (GWAS). ALL-Sum leverages a L0L2 penalized regression and ensemble learning across tuning parameters to flexibly model traits with diverse genetic architectures. In extensive large-scale simulations across a wide range of polygenicity and GWAS sample sizes, ALL-Sum consistently outperformed popular alternative methods in terms of prediction accuracy, runtime, and memory usage by 10%, 20-fold, and threefold, respectively, and demonstrated robustness to diverse genetic architectures. We validated the performance of ALL-Sum in real data analysis of 11 complex traits using GWAS summary statistics from nine data sources, including the Global Lipids Genetics Consortium, Breast Cancer Association Consortium, and FinnGen Biobank, with validation in the UK Biobank. Our results show that on average, ALL-Sum obtained PRS with 25% higher accuracy on average, with 15 times faster computation and half the memory than the current state-of-the-art methods, and had robust performance across a wide range of traits and diseases. Furthermore, our method demonstrates stable prediction when using linkage disequilibrium computed from different data sources. ALL-Sum is available as a user-friendly R software package with publicly available reference data for streamlined analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjunqi完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助下课了吧采纳,获得10
1秒前
1秒前
1秒前
好的完成签到,获得积分20
2秒前
蜂蜜不是糖完成签到 ,获得积分10
2秒前
狮子最爱吃芒果完成签到,获得积分10
2秒前
3秒前
4秒前
尘雾完成签到,获得积分10
4秒前
澜生发布了新的文献求助10
5秒前
leekle完成签到,获得积分10
6秒前
shengChen发布了新的文献求助10
6秒前
自信鞯发布了新的文献求助10
7秒前
江北小赵完成签到,获得积分10
7秒前
7秒前
7秒前
clock完成签到 ,获得积分10
7秒前
虫二先生完成签到 ,获得积分10
7秒前
甜甜的难敌完成签到,获得积分10
8秒前
8秒前
9秒前
小潘同学完成签到,获得积分10
9秒前
9秒前
科研通AI5应助传统的海露采纳,获得10
10秒前
学术刘亦菲完成签到,获得积分10
10秒前
成就的烧鹅完成签到,获得积分20
10秒前
11秒前
dd发布了新的文献求助10
11秒前
luoshi应助leon采纳,获得30
12秒前
12秒前
wang完成签到,获得积分10
12秒前
可爱的函函应助hu采纳,获得10
12秒前
12秒前
我测你码关注了科研通微信公众号
13秒前
下课了吧发布了新的文献求助10
13秒前
jy发布了新的文献求助10
13秒前
绘梨衣完成签到,获得积分10
14秒前
数据线完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794