亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancing Electrically Conductive Metal–Organic Frameworks for Photocatalytic Energy Conversion

光催化 材料科学 纳米技术 载流子 能量转换 能量转换效率 电子结构 金属有机骨架 吸附 化学工程 化学 光电子学 催化作用 有机化学 计算化学 工程类 物理 热力学
作者
Xiaoyu Fang,Ji Yong Choi,Michael Stodolka,Hoai T. B. Pham,Jihye Park
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (16): 2316-2325 被引量:4
标识
DOI:10.1021/acs.accounts.4c00280
摘要

ConspectusPhotocatalytic energy conversion is a pivotal process for harnessing solar energy to produce chemicals and presents a sustainable alternative to fossil fuels. Key strategies to enhance photocatalytic efficiency include facilitating mass transport and reactant adsorption, improving light absorption, and promoting electron and hole separation to suppress electron-hole recombination. This Account delves into the potential advantages of electrically conductive metal-organic frameworks (EC-MOFs) in photocatalytic energy conversion and examines how manipulating electronic structures and controlling morphology and defects affect their unique properties, potentially impacting photocatalytic efficiency and selectivity. Moreover, with a proof-of-concept study of photocatalytic hydrogen peroxide production by manipulating the EC-MOF's electronic structure, we highlight the potential of the strategies outlined in this Account.EC-MOFs not only possess porosity and surface areas like conventional MOFs, but exhibit electronic conductivity through d-p conjugation between ligands and metal nodes, enabling effective charge transport. Their narrow band gaps also allow for visible light absorption, making them promising candidates for efficient photocatalysts. In EC-MOFs, the modular design of metal nodes and ligands allows fine-tuning of both the electronic structure and physical properties, including controlling the particle morphology, which is essential for optimizing band positions and improving charge transport to achieve efficient and selective photocatalytic energy conversion.Despite their potential as photocatalysts, modulating the electronic structure or controlling the morphology of EC-MOFs is nontrivial, as their fast growth kinetics make them prone to defect formation, impacting mass and charge transport. To fully leverage the photocatalytic potential of EC-MOFs, we discuss our group's efforts to manipulate their electronic structures and develop effective synthetic strategies for morphology control and defect healing. For tuning electronic structures, diversifying the combinations of metals and linkers available for EC-MOF synthesis has been explored. Next, we suggest that synthesizing ligand-based solid solutions will enable continuous tuning of the band positions, demonstrating the potential to distinguish between photocatalytic reactions with similar redox potentials. Lastly, we present incorporating a donor-acceptor system in an EC-MOF to spatially separate photogenerated carriers, which could suppress electron-hole recombination. As a synthetic strategy for morphology control, we demonstrated that electrosynthesis can modify particle morphology, enhancing electrochemical surface area, which will be beneficial for reactant adsorption. Finally, we suggest a defect healing strategy that will enhance charge transport by reducing charge traps on defects, potentially improving the photocatalytic efficiency.Our vision in this Account is to introduce EC-MOFs as an efficient platform for photocatalytic energy conversion. Although EC-MOFs are a new class of semiconductor materials and have not been extensively studied for photocatalytic energy conversion, their inherent light absorption and electron transport properties indicate significant photocatalytic potential. We envision that employing modular molecular design to control electronic structures and applying effective synthetic strategies to customize morphology and defect repair can promote charge separation, electron transfer to potential reactants, and mass transport to realize high selectivity and efficiency in EC-MOF-based photocatalysts. This effort not only lays the foundation for the rational design and synthesis of EC-MOFs, but has the potential to advance their use in photocatalytic energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ash发布了新的文献求助10
2秒前
舒心的寻琴完成签到,获得积分10
6秒前
科研通AI5应助吴雨峰采纳,获得10
13秒前
故意的芷蝶完成签到,获得积分10
14秒前
22秒前
吴雨峰发布了新的文献求助10
27秒前
清爽冬莲完成签到 ,获得积分10
29秒前
wind完成签到,获得积分10
35秒前
英俊的铭应助Amon采纳,获得10
46秒前
sunny完成签到 ,获得积分10
54秒前
科研通AI5应助复杂书竹采纳,获得10
54秒前
佚名完成签到,获得积分10
1分钟前
1分钟前
果酱圆圆发布了新的文献求助10
1分钟前
1分钟前
乐乐应助zzzxxx采纳,获得10
1分钟前
果酱圆圆完成签到,获得积分20
1分钟前
竹斌发布了新的文献求助10
1分钟前
1分钟前
Amon完成签到,获得积分10
1分钟前
1分钟前
竹斌完成签到,获得积分20
1分钟前
1分钟前
乔治哇完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
三点水发布了新的文献求助10
2分钟前
李健应助聪明的青雪采纳,获得10
2分钟前
凶狠的小土豆完成签到,获得积分10
2分钟前
Jasper应助ceeray23采纳,获得20
2分钟前
轩辕听白完成签到,获得积分10
2分钟前
充电宝应助啦啦啦采纳,获得10
2分钟前
轩辕听白发布了新的文献求助20
2分钟前
回眸完成签到 ,获得积分10
2分钟前
2分钟前
平淡如天完成签到,获得积分10
2分钟前
远陌发布了新的文献求助10
2分钟前
2分钟前
Transecond完成签到,获得积分20
3分钟前
善良的冰颜完成签到 ,获得积分10
3分钟前
高分求助中
The Foraging Behavior of the Honey Bee (Apis mellifera, L.) 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681624
求助须知:如何正确求助?哪些是违规求助? 3233481
关于积分的说明 9808980
捐赠科研通 2945006
什么是DOI,文献DOI怎么找? 1615024
邀请新用户注册赠送积分活动 762505
科研通“疑难数据库(出版商)”最低求助积分说明 737455