Computational evolution of social norms in well-mixed and group-structured populations

群(周期表) 心理学 化学 有机化学
作者
Yohsuke Murase,Christian Hilbe
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (33)
标识
DOI:10.1073/pnas.2406885121
摘要

Models of indirect reciprocity study how social norms promote cooperation. In these models, cooperative individuals build up a positive reputation, which in turn helps them in their future interactions. The exact reputational benefits of cooperation depend on the norm in place, which may change over time. Previous research focused on the stability of social norms. Much less is known about how social norms initially evolve when competing with many others. A comprehensive evolutionary analysis, however, has been difficult. Even among the comparably simple space of so-called third-order norms, there are thousands of possibilities, each one inducing its own reputation dynamics. To address this challenge, we use large-scale computer simulations. We study the reputation dynamics of each third-order norm and all evolutionary transitions between them. In contrast to established work with only a handful of norms, we find that cooperation is hard to maintain in well-mixed populations. However, within group-structured populations, cooperation can emerge. The most successful norm in our simulations is particularly simple. It regards cooperation as universally positive, and defection as usually negative-unless defection takes the form of justified punishment. This research sheds light on the complex interplay of social norms, their induced reputation dynamics, and population structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助犬来八荒采纳,获得10
刚刚
DellDai完成签到,获得积分10
刚刚
Auoror完成签到,获得积分10
刚刚
returno_0完成签到 ,获得积分10
1秒前
spring给spring的求助进行了留言
1秒前
FashionBoy应助欢喜的依风采纳,获得10
2秒前
2秒前
松松完成签到,获得积分10
2秒前
huqing发布了新的文献求助10
3秒前
今日店休完成签到,获得积分20
3秒前
舟舟完成签到 ,获得积分10
3秒前
azmj发布了新的文献求助10
4秒前
孤独的面包完成签到,获得积分20
4秒前
完美世界应助Jimmy Ko采纳,获得10
4秒前
5秒前
KING发布了新的文献求助10
5秒前
5秒前
天天快乐应助向日葵采纳,获得10
6秒前
简单的百川关注了科研通微信公众号
6秒前
川流发布了新的文献求助10
8秒前
今日店休发布了新的文献求助10
8秒前
9秒前
9秒前
ding应助多情的飞绿采纳,获得10
10秒前
10秒前
仲谋发布了新的文献求助50
10秒前
邓什么邓发布了新的文献求助10
13秒前
DAT完成签到 ,获得积分10
13秒前
上官若男应助nieyy采纳,获得10
14秒前
15秒前
16秒前
aurevoir完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
20秒前
且歌且行完成签到,获得积分10
20秒前
Kessino发布了新的文献求助10
20秒前
叽了咕噜应助科研通管家采纳,获得20
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206