Computational evolution of social norms in well-mixed and group-structured populations

群(周期表) 心理学 化学 有机化学
作者
Yohsuke Murase,Christian Hilbe
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (33)
标识
DOI:10.1073/pnas.2406885121
摘要

Models of indirect reciprocity study how social norms promote cooperation. In these models, cooperative individuals build up a positive reputation, which in turn helps them in their future interactions. The exact reputational benefits of cooperation depend on the norm in place, which may change over time. Previous research focused on the stability of social norms. Much less is known about how social norms initially evolve when competing with many others. A comprehensive evolutionary analysis, however, has been difficult. Even among the comparably simple space of so-called third-order norms, there are thousands of possibilities, each one inducing its own reputation dynamics. To address this challenge, we use large-scale computer simulations. We study the reputation dynamics of each third-order norm and all evolutionary transitions between them. In contrast to established work with only a handful of norms, we find that cooperation is hard to maintain in well-mixed populations. However, within group-structured populations, cooperation can emerge. The most successful norm in our simulations is particularly simple. It regards cooperation as universally positive, and defection as usually negative-unless defection takes the form of justified punishment. This research sheds light on the complex interplay of social norms, their induced reputation dynamics, and population structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
容容容完成签到,获得积分10
刚刚
sup发布了新的文献求助10
1秒前
lzcnextdoor发布了新的文献求助10
2秒前
平常柔关注了科研通微信公众号
2秒前
酷波er应助优雅的雨采纳,获得10
2秒前
2秒前
天天快乐应助smoke采纳,获得20
2秒前
3秒前
Owen应助无恙采纳,获得10
3秒前
4秒前
曹文迪发布了新的文献求助10
5秒前
5秒前
五月莲花完成签到,获得积分10
6秒前
lzcnextdoor完成签到,获得积分10
6秒前
Molly关注了科研通微信公众号
6秒前
Molly关注了科研通微信公众号
6秒前
共享精神应助标致的幼菱采纳,获得10
7秒前
科目三应助sup采纳,获得10
8秒前
吴彦祖发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
11秒前
12秒前
kacey发布了新的文献求助10
13秒前
水穷云起完成签到,获得积分10
14秒前
luo发布了新的文献求助10
15秒前
15秒前
16秒前
烟花应助Adzuki0812采纳,获得10
16秒前
武雨寒发布了新的文献求助10
17秒前
Steven发布了新的文献求助10
17秒前
李健应助晚来天欲雪采纳,获得10
17秒前
18秒前
Akim应助小小时光采纳,获得10
19秒前
19秒前
leslie发布了新的文献求助10
20秒前
清清发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430