Computational evolution of social norms in well-mixed and group-structured populations

群(周期表) 心理学 化学 有机化学
作者
Yohsuke Murase,Christian Hilbe
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (33)
标识
DOI:10.1073/pnas.2406885121
摘要

Models of indirect reciprocity study how social norms promote cooperation. In these models, cooperative individuals build up a positive reputation, which in turn helps them in their future interactions. The exact reputational benefits of cooperation depend on the norm in place, which may change over time. Previous research focused on the stability of social norms. Much less is known about how social norms initially evolve when competing with many others. A comprehensive evolutionary analysis, however, has been difficult. Even among the comparably simple space of so-called third-order norms, there are thousands of possibilities, each one inducing its own reputation dynamics. To address this challenge, we use large-scale computer simulations. We study the reputation dynamics of each third-order norm and all evolutionary transitions between them. In contrast to established work with only a handful of norms, we find that cooperation is hard to maintain in well-mixed populations. However, within group-structured populations, cooperation can emerge. The most successful norm in our simulations is particularly simple. It regards cooperation as universally positive, and defection as usually negative-unless defection takes the form of justified punishment. This research sheds light on the complex interplay of social norms, their induced reputation dynamics, and population structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇见飞儿完成签到,获得积分0
刚刚
义气的音响完成签到 ,获得积分10
刚刚
爆米花应助徐靖依采纳,获得10
1秒前
科研通AI2S应助风清扬采纳,获得10
1秒前
zzqblue发布了新的文献求助10
1秒前
Klaust发布了新的文献求助10
1秒前
铁头霸霸完成签到 ,获得积分10
1秒前
七QI完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
满满完成签到,获得积分10
3秒前
Peter完成签到,获得积分10
3秒前
4秒前
5秒前
大个应助Zhuzhu采纳,获得10
5秒前
顾矜应助懵懂的枫叶采纳,获得10
6秒前
星期八完成签到,获得积分10
6秒前
tlggg发布了新的文献求助10
7秒前
zhanglinfeng完成签到,获得积分10
8秒前
哈哈完成签到,获得积分10
8秒前
9秒前
耿123完成签到,获得积分10
10秒前
11秒前
告白气球完成签到,获得积分20
12秒前
deansy完成签到,获得积分10
14秒前
zy发布了新的文献求助10
15秒前
告白气球发布了新的文献求助10
15秒前
FortuneCutie完成签到,获得积分10
16秒前
风的季节完成签到,获得积分0
16秒前
好好完成签到,获得积分20
16秒前
谓易ing完成签到 ,获得积分10
17秒前
热心梦安完成签到,获得积分10
17秒前
幸运星完成签到 ,获得积分10
18秒前
yang完成签到,获得积分10
18秒前
科研通AI6应助zhoujiaxu采纳,获得10
18秒前
19秒前
小比熊完成签到,获得积分10
19秒前
20秒前
危机的小丸子完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603729
求助须知:如何正确求助?哪些是违规求助? 4688711
关于积分的说明 14855620
捐赠科研通 4694855
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814