材料科学
电容器
电解电容器
薄膜电容器
聚合物电容器
阴极
光电子学
泄漏(经济)
电极
电子线路
滤波电容器
电介质
复合材料
电气工程
电压
化学
物理化学
工程类
经济
宏观经济学
作者
Yuan Guo,Shixin Wang,Xianfeng Du,Zhongshuai Liang,Ruizhi Wang,Zhuo Li,Shan Huang,Yuehong Xie
标识
DOI:10.1016/j.ensm.2024.103685
摘要
Capacitors are indispensable components of electronic circuits. Filter capacitors, mainly dominated by electrolytic capacitors, are critical for the accurate power supply of integrated circuits for central processors and storage devices, affecting the performance of advanced and sophisticated electronic equipment. However, electrolytic capacitors are restricted in working temperatures (<150 °C) and humidity conditions due to the inherent characteristics of MnO2 or polymer cathodes that tend to deteriorate at high temperatures and moisture. Here, high temperature resistant and conductivity SnO2 cathode and MIM-like (SnO2/AAO/Al) structures are introduced into aluminum electrolytic capacitors via ALD technology. First achieved in a higher temperature window (-60 °C∼330 °C), the capacitor maintains a stable capacity (114.5 ± 3.6 μF/cm2) and phase angles (-89.5 ± 0.2°) at 120 Hz. The tight stacking and conformability of ALD even allows unencapsulated devices to exhibit durable waterproof, showing stable performance for immersion in water within 90 days. Moreover, a thin amorphous Al2O3 (A) as buffer layer is introduced at electrode/dielectric interface, aiming to barrier the interfacial atomic diffusion at the SnO2/AAO. A stable vdW SnO2/A/AAO interfaces is obtained, proven by MD and DFT calculations. Impressively, the capacitor exhibits high reliability with high breakdown field strength (5.5 MV/cm), low leakage current (7.2 × 10–7 A/cm2 at 1 V) and low loss (2% at 120 Hz). Applied in circuits, the capacitor filters 100 kHz signal with a Vripple of only 15 mV and shows excellent charging and discharging behaviors. The work may pave the way for the practical application of electrolytic capacitors in harsh working environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI