CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity

互补性(分子生物学) 计算机视觉 计算机科学 人工智能 目标检测 数学 计算机图形学(图像) 模式识别(心理学) 遗传学 生物
作者
Hao Shi,Chengshan Pang,Jiaming Zhang,Kailun Yang,Yuhao Wu,Huajian Ni,Yining Lin,Rainer Stiefelhagen,Kaiwei Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tip.2024.3463409
摘要

Roadside camera-driven 3D object detection is a crucial task in intelligent transportation systems, which extends the perception range beyond the limitations of vision-centric vehicles and enhances road safety. While previous studies have limitations in using only depth or height information, we find both depth and height matter and they are in fact complementary. The depth feature encompasses precise geometric cues, whereas the height feature is primarily focused on distinguishing between various categories of height intervals, essentially providing semantic context. This insight motivates the development of Complementary-BEV (CoBEV), a novel end-to-end monocular 3D object detection framework that integrates depth and height to construct robust BEV representations. In essence, CoBEV estimates each pixel's depth and height distribution and lifts the camera features into 3D space for lateral fusion using the newly proposed two-stage complementary feature selection (CFS) module. A BEV feature distillation framework is also seamlessly integrated to further enhance the detection accuracy from the prior knowledge of the fusion-modal CoBEV teacher. We conduct extensive experiments on the public 3D detection benchmarks of roadside camera-based DAIR-V2X-I and Rope3D, as well as the private Supremind-Road dataset, demonstrating that CoBEV not only achieves the accuracy of the new state-of-the-art, but also significantly advances the robustness of previous methods in challenging long-distance scenarios and noisy camera disturbance, and enhances generalization by a large margin in heterologous settings with drastic changes in scene and camera parameters. For the first time, the vehicle AP score of a camera model reaches 80% on DAIR-V2X-I in terms of easy mode. The source code will be made publicly available at CoBEV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjq完成签到,获得积分10
1秒前
1秒前
雅琳子完成签到,获得积分20
3秒前
蟹浦肉完成签到,获得积分10
4秒前
南国应助鱼儿采纳,获得10
4秒前
施耐德完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
小刘发布了新的文献求助10
8秒前
9秒前
9秒前
诚心冬亦发布了新的文献求助10
10秒前
10秒前
醉熏的朋友完成签到 ,获得积分10
12秒前
唔西迪西发布了新的文献求助10
13秒前
一盏壶发布了新的文献求助10
14秒前
20秒前
20秒前
嗯哼应助Yn_采纳,获得20
20秒前
请叫我风吹麦浪应助niko采纳,获得10
21秒前
琥珀川完成签到,获得积分10
22秒前
池鱼完成签到,获得积分10
22秒前
geoffreyfan完成签到,获得积分10
23秒前
23秒前
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
Candice应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
七月流火应助科研通管家采纳,获得100
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
23秒前
田様应助科研通管家采纳,获得10
23秒前
大盏发布了新的文献求助10
26秒前
标致的发布了新的文献求助150
27秒前
28秒前
30秒前
编号89757完成签到,获得积分10
31秒前
32秒前
晨曦完成签到,获得积分10
33秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464375
求助须知:如何正确求助?哪些是违规求助? 3057717
关于积分的说明 9058109
捐赠科研通 2747718
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696159