Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics

计算生物学 生物 小分子 基因表达谱 转录组 遗传学 基因 基因表达
作者
Keith P. Romano,Josephine Shaw Bagnall,Thulasi Warrier,Jaryd R. Sullivan,Kristina Ferrara,Marek Orzechowski,Phuong Nguyen,Kyra Raines,Jonathan Livny,Noam Shoresh,Deborah T. Hung
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (45) 被引量:1
标识
DOI:10.1073/pnas.2409747121
摘要

The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁美杰发布了新的文献求助10
1秒前
梅仑西西发布了新的文献求助10
2秒前
拉长的元芹应助zijingliang采纳,获得10
3秒前
3秒前
4秒前
爆米花应助俊秀的紫易采纳,获得10
6秒前
7秒前
Shi发布了新的文献求助10
8秒前
危机的含莲完成签到,获得积分10
8秒前
Jasper应助小巧的水之采纳,获得10
9秒前
10秒前
wangtj发布了新的文献求助10
11秒前
shuxi完成签到,获得积分10
11秒前
12秒前
12秒前
小汪完成签到,获得积分10
13秒前
寻道图强应助zhogwe采纳,获得30
13秒前
Stove完成签到,获得积分10
15秒前
16秒前
梁自豪给梁自豪的求助进行了留言
17秒前
yelide发布了新的文献求助100
18秒前
19秒前
充电宝应助YGYANG采纳,获得10
19秒前
enchanted发布了新的文献求助10
21秒前
21秒前
布丁布丁发布了新的文献求助10
24秒前
Shi完成签到,获得积分10
24秒前
赘婿应助小木得霖采纳,获得10
24秒前
26秒前
星空不设限完成签到 ,获得积分10
26秒前
元友容发布了新的文献求助10
27秒前
fairy完成签到,获得积分10
29秒前
钵钵鸡发布了新的文献求助10
29秒前
wyblobin发布了新的文献求助10
29秒前
Z丶完成签到,获得积分10
30秒前
烂漫的汲完成签到,获得积分10
31秒前
32秒前
SciGPT应助科研小狗采纳,获得10
32秒前
sm完成签到 ,获得积分10
32秒前
甜甜完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313875
求助须知:如何正确求助?哪些是违规求助? 2946190
关于积分的说明 8528864
捐赠科研通 2621756
什么是DOI,文献DOI怎么找? 1434075
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650718