已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics

计算生物学 生物 小分子 基因表达谱 转录组 遗传学 基因 基因表达
作者
Keith P. Romano,Josephine Shaw Bagnall,Thulasi Warrier,Jaryd R. Sullivan,Kristina Ferrara,Marek Orzechowski,Phuong Nguyen,Kyra Raines,Jonathan Livny,Noam Shoresh,Deborah T. Hung
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (45) 被引量:1
标识
DOI:10.1073/pnas.2409747121
摘要

The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走的绅士完成签到,获得积分10
刚刚
闪闪的梦槐完成签到 ,获得积分10
刚刚
不想看文献完成签到 ,获得积分10
1秒前
2秒前
深情安青应助噜噜大王采纳,获得10
2秒前
顺其自然完成签到 ,获得积分10
3秒前
xiao完成签到 ,获得积分10
3秒前
荀代灵发布了新的文献求助10
3秒前
脑洞疼应助光亮的天德采纳,获得10
3秒前
NOTHING完成签到 ,获得积分10
4秒前
情怀应助organoid elegan采纳,获得10
5秒前
飘逸澜完成签到,获得积分10
5秒前
Yi完成签到,获得积分10
6秒前
小易完成签到 ,获得积分10
6秒前
星辰大海应助FY采纳,获得10
6秒前
lanlanlan完成签到,获得积分10
6秒前
hbu123完成签到,获得积分10
6秒前
Groot完成签到,获得积分10
7秒前
浮游应助小橘子吃傻子采纳,获得10
7秒前
栗子刻苦完成签到 ,获得积分20
8秒前
9秒前
ZLN666完成签到 ,获得积分10
9秒前
10秒前
华仔应助TiAmo采纳,获得10
11秒前
11秒前
动听的满天完成签到,获得积分10
11秒前
九黎完成签到 ,获得积分10
12秒前
光亮的天德完成签到,获得积分10
13秒前
斯文无敌完成签到,获得积分10
14秒前
muyassar发布了新的文献求助10
14秒前
ABJ完成签到 ,获得积分10
15秒前
15秒前
JiangyingYu完成签到,获得积分10
16秒前
16秒前
AAAaa发布了新的文献求助20
16秒前
单山蘸水完成签到 ,获得积分10
16秒前
清爽老九发布了新的文献求助10
17秒前
蒲公英完成签到 ,获得积分10
17秒前
Akim应助猴哥采纳,获得10
17秒前
是三石啊完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076451
求助须知:如何正确求助?哪些是违规求助? 4295893
关于积分的说明 13386085
捐赠科研通 4117901
什么是DOI,文献DOI怎么找? 2255021
邀请新用户注册赠送积分活动 1259552
关于科研通互助平台的介绍 1192469

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10