已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An accurate tidal peak localization method in radial arterial pulse signals based on hybrid neural networks

脉搏(音乐) 人工神经网络 声学 物理 计算机科学 人工智能 光学 探测器
作者
Chao Chen,Zhendong Chen,Hongmiin Luo,Bo Peng,Yinan Hao,Xinxin Li,Haiqing Xie
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:19 (08): P08017-P08017
标识
DOI:10.1088/1748-0221/19/08/p08017
摘要

Abstract Background : cardiovascular diseases (CVDs) have become the leading causes of death worldwide. Arterial stiffness and elasticity are important indicators of cardiovascular health. Pulse wave analysis (PWA) is essential for analyzing arterial stiffness and elasticity, which are highly dependent on the tidal peak ( P 2 ). P 2 is one of the four key physiological points, which also include percussion peaks ( P 1 ), diastolic notches ( P 3 ), and diastolic peaks ( P 4 ). P 1 , P 3 , and P 4 are often local maxima or minima, facilitating their identification via the second derivatives method, a classic localization method for key physiological points. Classic methods such as the second derivative method, Empirical Mode Decomposition (EMD), and Wavelet Transform (WT), have been employed for the extraction and analysis of the P 2 . Due to individual variation and arterial stiffness, locating the P 2 using classic methods is particularly challenging. Methods : we propose a hybrid neural network based on Residual Networks (ResNet) and bidirectional Long Short-Term Memory Networks (Bi-LSTM), successfully achieving high-precision localization of the P 2 in radial artery pulse signals. Meanwhile, we compared our method with the second derivative method, EMD, WT, Convolutional Neural Networks (CNN) and the hybrid model with ResNet and LSTM. Results : the results indicate that our proposed model exhibits significantly higher accuracy compared to other algorithms. Overall, MAEs and RMSEs for our proposed method are 62.60% and 58.84% on average less than those for other algorithms. The average R Adj 2 is 29.20% higher. The outcomes of the efficiency evaluation suggest that the hybrid model performs more balancedly without any significant shortcomings, which indicates that the Bi-LSTM structure upgrades the performances of LSTM. Significance : our hybrid model can provide the medical field with improved diagnostic tools and promote the development of clinical practice and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒店员完成签到,获得积分20
刚刚
刚刚
3秒前
4秒前
潇洒店员发布了新的文献求助10
5秒前
年轻映天发布了新的文献求助10
5秒前
6秒前
6秒前
盛清让发布了新的文献求助10
8秒前
科研通AI5应助哎呦天松采纳,获得10
8秒前
包容的剑发布了新的文献求助10
11秒前
xl_c发布了新的文献求助20
11秒前
keyantong完成签到,获得积分10
11秒前
陆嘉盈发布了新的文献求助10
11秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
十七。发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
小王同学应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得20
15秒前
科研通AI5应助huanhuan采纳,获得10
16秒前
寂寞的马里奥完成签到,获得积分10
16秒前
xiaoming完成签到,获得积分0
16秒前
科研通AI2S应助keyantong采纳,获得10
16秒前
顺心的千兰完成签到,获得积分10
17秒前
CipherSage应助苦瓜采纳,获得10
17秒前
m彬m彬完成签到 ,获得积分10
18秒前
ashui发布了新的文献求助10
18秒前
玛珂巴巴珂完成签到 ,获得积分10
20秒前
桐桐应助荼蘼采纳,获得10
20秒前
22秒前
22秒前
哈哈发布了新的文献求助10
22秒前
22秒前
22秒前
神勇的人雄完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3570933
求助须知:如何正确求助?哪些是违规求助? 3141584
关于积分的说明 9443694
捐赠科研通 2842922
什么是DOI,文献DOI怎么找? 1562607
邀请新用户注册赠送积分活动 731096
科研通“疑难数据库(出版商)”最低求助积分说明 718387