亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An accurate tidal peak localization method in radial arterial pulse signals based on hybrid neural networks

脉搏(音乐) 人工神经网络 声学 物理 计算机科学 人工智能 光学 探测器
作者
Chao Chen,Zhendong Chen,Hongmiin Luo,Bo Peng,Yinan Hao,Xinxin Li,Haiqing Xie
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:19 (08): P08017-P08017
标识
DOI:10.1088/1748-0221/19/08/p08017
摘要

Abstract Background : cardiovascular diseases (CVDs) have become the leading causes of death worldwide. Arterial stiffness and elasticity are important indicators of cardiovascular health. Pulse wave analysis (PWA) is essential for analyzing arterial stiffness and elasticity, which are highly dependent on the tidal peak ( P 2 ). P 2 is one of the four key physiological points, which also include percussion peaks ( P 1 ), diastolic notches ( P 3 ), and diastolic peaks ( P 4 ). P 1 , P 3 , and P 4 are often local maxima or minima, facilitating their identification via the second derivatives method, a classic localization method for key physiological points. Classic methods such as the second derivative method, Empirical Mode Decomposition (EMD), and Wavelet Transform (WT), have been employed for the extraction and analysis of the P 2 . Due to individual variation and arterial stiffness, locating the P 2 using classic methods is particularly challenging. Methods : we propose a hybrid neural network based on Residual Networks (ResNet) and bidirectional Long Short-Term Memory Networks (Bi-LSTM), successfully achieving high-precision localization of the P 2 in radial artery pulse signals. Meanwhile, we compared our method with the second derivative method, EMD, WT, Convolutional Neural Networks (CNN) and the hybrid model with ResNet and LSTM. Results : the results indicate that our proposed model exhibits significantly higher accuracy compared to other algorithms. Overall, MAEs and RMSEs for our proposed method are 62.60% and 58.84% on average less than those for other algorithms. The average R Adj 2 is 29.20% higher. The outcomes of the efficiency evaluation suggest that the hybrid model performs more balancedly without any significant shortcomings, which indicates that the Bi-LSTM structure upgrades the performances of LSTM. Significance : our hybrid model can provide the medical field with improved diagnostic tools and promote the development of clinical practice and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
52秒前
清净126完成签到,获得积分10
1分钟前
1分钟前
清秋若月完成签到 ,获得积分10
1分钟前
风趣过客发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助xiuT采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
打打应助jueshadi采纳,获得10
2分钟前
orixero应助yangluyao采纳,获得10
2分钟前
2分钟前
Jack发布了新的文献求助10
2分钟前
2分钟前
2分钟前
乐乐应助Jack采纳,获得10
2分钟前
yangluyao发布了新的文献求助10
2分钟前
xiuT发布了新的文献求助10
3分钟前
3分钟前
老宇126完成签到,获得积分10
3分钟前
kccake完成签到,获得积分10
3分钟前
jueshadi发布了新的文献求助10
3分钟前
充电宝应助qqq采纳,获得10
3分钟前
猪猪hero应助yangluyao采纳,获得10
3分钟前
jueshadi完成签到 ,获得积分10
3分钟前
狸宝的小果子完成签到 ,获得积分10
3分钟前
3分钟前
zheng完成签到 ,获得积分10
3分钟前
qqq发布了新的文献求助10
3分钟前
Attaa完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
要爱党发布了新的文献求助10
5分钟前
彭于晏应助要爱党采纳,获得10
5分钟前
5分钟前
5分钟前
思源应助勤奋的白桃采纳,获得10
5分钟前
勤奋的白桃完成签到,获得积分10
6分钟前
清净163完成签到,获得积分10
6分钟前
科研通AI2S应助灭灭羊采纳,获得10
6分钟前
KK完成签到 ,获得积分10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571270
求助须知:如何正确求助?哪些是违规求助? 3141865
关于积分的说明 9444761
捐赠科研通 2843299
什么是DOI,文献DOI怎么找? 1562814
邀请新用户注册赠送积分活动 731243
科研通“疑难数据库(出版商)”最低求助积分说明 718507