Medical Image Segmentation Review: The Success of U-Net

图像分割 人工智能 计算机科学 计算机视觉 分割 尺度空间分割 图像处理 图像纹理 模式识别(心理学) 图像(数学) 医学影像学
作者
Reza Azad,Ehsan Khodapanah Aghdam,Amelie Rauland,Yiwei Jia,Atlas Haddadi Avval,Afshin Bozorgpour,Sanaz Karimijafarbigloo,Joseph Cohen,Ehsan Adeli,Dorit Merhof
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10076-10095 被引量:438
标识
DOI:10.1109/tpami.2024.3435571
摘要

Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model has received tremendous attention from academic and industrial researchers who have extended it to address the scale and complexity created by medical tasks. These extensions are commonly related to enhancing the U-Net's backbone, bottleneck, or skip connections, or including representation learning, or combining it with a Transformer architecture, or even addressing probabilistic prediction of the segmentation map. Having a compendium of different previously proposed U-Net variants makes it easier for machine learning researchers to identify relevant research questions and understand the challenges of the biological tasks that challenge the model. In this work, we discuss the practical aspects of the U-Net model and organize each variant model into a taxonomy. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. Furthermore, we provide a comprehensive implementation library with trained models. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu11完成签到,获得积分10
刚刚
刚刚
Scc丶小白发布了新的文献求助30
刚刚
慕青应助荀连虎采纳,获得10
刚刚
111发布了新的文献求助10
刚刚
登登灯灯完成签到,获得积分10
1秒前
Owen应助淡然白安采纳,获得30
1秒前
8464368完成签到,获得积分10
1秒前
爱虹遍野完成签到,获得积分10
1秒前
1秒前
QQ完成签到,获得积分10
2秒前
不倦应助MNing采纳,获得10
2秒前
夸克的诗意完成签到,获得积分10
2秒前
小生不才完成签到,获得积分10
2秒前
2秒前
科研通AI6应助duoya采纳,获得10
3秒前
xwxhbydmet发布了新的文献求助10
3秒前
bhc完成签到,获得积分10
3秒前
3秒前
3秒前
桐桐应助月月采纳,获得10
3秒前
yzy完成签到,获得积分10
3秒前
3秒前
qp发布了新的文献求助10
4秒前
4秒前
liao完成签到,获得积分20
4秒前
yuna_yqc完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
大模型应助吉尼斯贝贝采纳,获得10
5秒前
347发布了新的文献求助20
5秒前
6秒前
alpv完成签到,获得积分10
6秒前
ef完成签到,获得积分10
6秒前
晒晒太阳发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
ZLS发布了新的文献求助10
7秒前
zzbyxh发布了新的文献求助20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284