Medical Image Segmentation Review: The Success of U-Net

图像分割 人工智能 计算机科学 计算机视觉 分割 尺度空间分割 图像处理 图像纹理 模式识别(心理学) 图像(数学) 医学影像学
作者
Reza Azad,Ehsan Khodapanah Aghdam,Amelie Rauland,Yiwei Jia,Atlas Haddadi Avval,Afshin Bozorgpour,Sanaz Karimijafarbigloo,Joseph Cohen,Ehsan Adeli,Dorit Merhof
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10076-10095 被引量:438
标识
DOI:10.1109/tpami.2024.3435571
摘要

Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model has received tremendous attention from academic and industrial researchers who have extended it to address the scale and complexity created by medical tasks. These extensions are commonly related to enhancing the U-Net's backbone, bottleneck, or skip connections, or including representation learning, or combining it with a Transformer architecture, or even addressing probabilistic prediction of the segmentation map. Having a compendium of different previously proposed U-Net variants makes it easier for machine learning researchers to identify relevant research questions and understand the challenges of the biological tasks that challenge the model. In this work, we discuss the practical aspects of the U-Net model and organize each variant model into a taxonomy. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. Furthermore, we provide a comprehensive implementation library with trained models. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsgvdf发布了新的文献求助20
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
排骨饭发布了新的文献求助10
2秒前
思源应助slowpoke采纳,获得10
2秒前
懵懂的妙竹完成签到,获得积分10
3秒前
李健的粉丝团团长应助ZLPY采纳,获得10
3秒前
bkagyin应助albertxin采纳,获得10
3秒前
Zysplus发布了新的文献求助10
4秒前
爆米花应助靖哥哥采纳,获得10
4秒前
5秒前
lunhui6453完成签到 ,获得积分10
5秒前
思源应助dsgvdf采纳,获得10
5秒前
邓肖帅完成签到,获得积分10
5秒前
zike发布了新的文献求助10
5秒前
spc68应助001采纳,获得10
6秒前
尤涅若发布了新的文献求助10
7秒前
lzlz199829完成签到,获得积分10
7秒前
紫熊发布了新的文献求助10
7秒前
7秒前
呆萌发布了新的文献求助10
7秒前
空无完成签到,获得积分10
8秒前
小蚂蚁发布了新的文献求助80
8秒前
8秒前
9秒前
活泼的鸣凤完成签到,获得积分20
11秒前
万能图书馆应助邓肖帅采纳,获得10
11秒前
林知鲸落发布了新的文献求助10
11秒前
handada发布了新的文献求助10
12秒前
LChen完成签到,获得积分10
12秒前
零下一秒完成签到,获得积分10
13秒前
pretty发布了新的文献求助10
13秒前
13秒前
panpan111发布了新的文献求助10
14秒前
霸气鞯发布了新的文献求助10
14秒前
zike完成签到,获得积分10
14秒前
14秒前
零下一秒发布了新的文献求助10
15秒前
励志成为科研大师完成签到,获得积分10
15秒前
浮游应助handada采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075