Bearing RUL Prediction and Fault Diagnosis System based on Parallel Multi-scale MIMT Lightweight Model

方位(导航) 比例(比率) 断层(地质) 计算机科学 地质学 人工智能 地震学 物理 量子力学
作者
Xingchao Deng,Guanhua Zhu,Qinghua Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7c6f
摘要

Abstract In actual industrial production, the importance of safety production is increasingly prominent, and the degradation and failure of machinery and equipment are potential sources of safety hazards. Therefore, there is a growing trend towards real-time monitoring, prediction, and diagnosis of industrial equipment to prevent unpredictable impacts on life and property safety caused by sudden failures. To address this issue, this paper proposes a real-time degradation anomaly detection based on parallel multiscale autoencoders and a lightweight model of parallel multiscale multi-input multi-task for bearing Remaining Useful Life (RUL) prediction and fault diagnosis systems. Firstly, the multiscale autoencoder method is used to simulate actual working conditions and reconstruct the original vibration signals to build abnormal degradation detection intervals. The [0, $\mu$ +3$\sigma$] interval is utilized to judge abnormal degradation based on reconstruction errors, and the First Predict Timepoint (FPT) is determined adaptively. Secondly, a method for constructing dimensionless auxiliary datasets is proposed, which adopts a multi-input form based on deep separable convolution for feature extraction of original vibration signals, kurtosis, and peak values to improve the prediction and diagnosis performance of the lightweight model. Finally, a multi-task output method combining clustering and regression is employed to achieve RUL prediction and fault diagnosis of bearings. The proposed method overcomes the problems existing in traditional bearing RUL prediction and diagnosis methods and possesses theoretical innovation and engineering practicality. Validation on two bearing datasets confirms the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tianzml0应助wws采纳,获得10
1秒前
所所应助武雨寒采纳,获得10
1秒前
2秒前
kaxif完成签到,获得积分10
2秒前
爆米花应助自信白梦采纳,获得10
3秒前
robinhood完成签到,获得积分10
3秒前
4秒前
关学乖发布了新的文献求助10
5秒前
1005发布了新的文献求助10
5秒前
苹果酸奶发布了新的文献求助10
5秒前
燃点完成签到,获得积分20
6秒前
希望天下0贩的0应助Puokn采纳,获得10
6秒前
7秒前
风吹发布了新的文献求助10
8秒前
8秒前
滕皓轩发布了新的文献求助10
9秒前
NexusExplorer应助云宇采纳,获得10
10秒前
小二郎应助云宇采纳,获得10
10秒前
Lucas应助云宇采纳,获得10
10秒前
JamesPei应助云宇采纳,获得10
10秒前
今后应助云宇采纳,获得10
10秒前
酷波er应助云宇采纳,获得10
10秒前
思源应助云宇采纳,获得10
10秒前
Jasper应助云宇采纳,获得10
10秒前
李健的小迷弟应助云宇采纳,获得10
10秒前
今后应助小小怪将军采纳,获得10
10秒前
研友_VZG7GZ应助云宇采纳,获得10
10秒前
hope发布了新的文献求助10
11秒前
13秒前
13秒前
14秒前
14秒前
fangzhang发布了新的文献求助10
15秒前
阳光的衫完成签到 ,获得积分10
15秒前
CodeCraft应助Ray采纳,获得10
16秒前
李爱国应助友人A采纳,获得10
16秒前
17秒前
华仔应助温婉的从露采纳,获得10
19秒前
简易发布了新的文献求助10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170673
求助须知:如何正确求助?哪些是违规求助? 2821714
关于积分的说明 7936172
捐赠科研通 2482144
什么是DOI,文献DOI怎么找? 1322341
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608