亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bearing RUL Prediction and Fault Diagnosis System based on Parallel Multi-scale MIMT Lightweight Model

方位(导航) 比例(比率) 断层(地质) 计算机科学 地质学 人工智能 地震学 物理 量子力学
作者
Xiongrong Deng,Guanhua Zhu,Qinghua Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad7c6f
摘要

Abstract In actual industrial production, the importance of safety production is increasingly prominent, and the degradation and failure of machinery and equipment are potential sources of safety hazards. Therefore, there is a growing trend towards real-time monitoring, prediction, and diagnosis of industrial equipment to prevent unpredictable impacts on life and property safety caused by sudden failures. To address this issue, this paper proposes a real-time degradation anomaly detection based on parallel multiscale autoencoders and a lightweight model of parallel multiscale multi-input multi-task for bearing Remaining Useful Life (RUL) prediction and fault diagnosis systems. Firstly, the multiscale autoencoder method is used to simulate actual working conditions and reconstruct the original vibration signals to build abnormal degradation detection intervals. The [0, $\mu$ +3$\sigma$] interval is utilized to judge abnormal degradation based on reconstruction errors, and the First Predict Timepoint (FPT) is determined adaptively. Secondly, a method for constructing dimensionless auxiliary datasets is proposed, which adopts a multi-input form based on deep separable convolution for feature extraction of original vibration signals, kurtosis, and peak values to improve the prediction and diagnosis performance of the lightweight model. Finally, a multi-task output method combining clustering and regression is employed to achieve RUL prediction and fault diagnosis of bearings. The proposed method overcomes the problems existing in traditional bearing RUL prediction and diagnosis methods and possesses theoretical innovation and engineering practicality. Validation on two bearing datasets confirms the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
50秒前
stupidZ发布了新的文献求助10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
Tiger完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
所所应助都可以采纳,获得10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
yang发布了新的文献求助50
3分钟前
Zephyr发布了新的文献求助30
4分钟前
顾矜应助如沐春风采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
打打应助wbs13521采纳,获得10
6分钟前
stupidZ完成签到,获得积分10
6分钟前
6分钟前
岁和景明完成签到 ,获得积分10
6分钟前
国色不染尘完成签到,获得积分10
7分钟前
慕容雅柏完成签到 ,获得积分10
7分钟前
7分钟前
yx_cheng应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
光合作用完成签到,获得积分10
8分钟前
8分钟前
8分钟前
研友_ngqoE8完成签到,获得积分10
8分钟前
8分钟前
跳跃毒娘发布了新的文献求助10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
yx_cheng应助科研通管家采纳,获得10
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
yx_cheng应助科研通管家采纳,获得10
9分钟前
yx_cheng应助科研通管家采纳,获得10
9分钟前
温柔亦寒完成签到,获得积分10
10分钟前
10分钟前
RAIN发布了新的文献求助10
11分钟前
小马甲应助顺利的尔芙采纳,获得10
11分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008310
求助须知:如何正确求助?哪些是违规求助? 3548041
关于积分的说明 11298654
捐赠科研通 3282878
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188