Trends of falls mortality among older adults in urban and rural China, 1987–2021

人口学 中国 伤害预防 毒物控制 农村地区 队列 医学 队列研究 代群效应 职业安全与健康 自杀预防 死亡率 老年学 地理 环境卫生 病理 社会学 内科学 考古
作者
Yu Wu,Binbin Su,Jiatong Gao,Panliang Zhong,Xiaoying Zheng
出处
期刊:Injury Prevention [BMJ]
卷期号:: ip-045225 被引量:2
标识
DOI:10.1136/ip-2023-045225
摘要

Background Falls in older age pose a major public health concern, with unclear urban–rural patterns of falls mortality in China. This study examines the trends of late-life falls mortality in urban and rural China over a 35-year period. Methods Falls mortality data were sourced from China’s National Health Commission. Joinpoint regression analysis was used to examine changes in trends and age-period-cohort modelling to estimate age, period and cohort effects on fall-related mortality from 1987 to 2021. Net drift, local drift, longitudinal age curves and period relative risks were also calculated. Results The age-standardised falls mortality in older age showed a long-term trend of initial decline prior to 2003, followed by a steep increase thereafter, with notable distinctions between urban and rural patterns. The rise in rural populations, particularly among older males, was more conspicuous. In rural areas, the decline in falls mortality diminished with age, contrary to the urban trend. Falls mortality increased with age in both urban and rural older populations, peaking in the group aged 85–89. The period effect curves of falls mortality in urban and rural areas both approximated a U-shaped pattern while there were minor variations in early cohorts. Conclusions China has experienced a consistent rise in late-life falls mortality in recent years. Notably, there are significant urban–rural disparities in age, period and cohort effects of fall-related mortality among older adults. Rural residents, males and older age groups have potential higher fatal-falls risk. Targeted strategies should be implemented to prevent late-life falls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
ho发布了新的文献求助30
5秒前
笑点低雅琴完成签到,获得积分10
6秒前
urkk发布了新的文献求助10
6秒前
深情安青应助F1采纳,获得10
7秒前
一一一多完成签到 ,获得积分10
7秒前
缓慢的甜瓜完成签到,获得积分10
8秒前
高佳慧发布了新的文献求助50
9秒前
苏芳完成签到,获得积分10
11秒前
13秒前
隐形的非笑完成签到 ,获得积分10
13秒前
zhuangxiong完成签到,获得积分10
14秒前
粗暴的醉卉完成签到,获得积分10
15秒前
0713完成签到,获得积分10
15秒前
seedcode完成签到,获得积分10
15秒前
liaoyinghong完成签到,获得积分20
16秒前
刘烨完成签到 ,获得积分10
16秒前
chrysan完成签到,获得积分10
17秒前
啦啦啦啦发布了新的文献求助10
20秒前
程志强完成签到,获得积分10
20秒前
22秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
24秒前
24秒前
无花果应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
24秒前
bestlsy完成签到 ,获得积分10
26秒前
26秒前
称心易巧发布了新的文献求助10
29秒前
mm发布了新的文献求助10
31秒前
Lucas应助勇往直前采纳,获得10
32秒前
粥粥完成签到 ,获得积分10
32秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703