Predicting potential microbe–disease associations based on multi-source features and deep learning

人工智能 计算机科学 机器学习 分类器(UML) 自编码 随机森林 深度学习 疾病 特征选择 人工神经网络 聚类分析 模式识别(心理学) 计算生物学 生物 医学 病理
作者
Liugen Wang,Wang Yan,Chenxu Xuan,Bai Zhang,Hanwen Wu,Jie Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad255
摘要

Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cynthia发布了新的文献求助10
刚刚
2秒前
曼巴完成签到,获得积分10
2秒前
jjjjj发布了新的文献求助10
3秒前
5秒前
D33sama完成签到,获得积分10
5秒前
章鱼发布了新的文献求助20
6秒前
张才豪发布了新的文献求助10
6秒前
roy发布了新的文献求助10
7秒前
共享精神应助soccer13采纳,获得10
7秒前
9秒前
田様应助dsaifjs采纳,获得10
10秒前
互助遵法尚德应助吐槽君采纳,获得10
11秒前
YaHe完成签到 ,获得积分10
12秒前
ZeradesY完成签到,获得积分10
12秒前
Sylvia完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
体贴的冥王星完成签到,获得积分20
15秒前
指尖的芭蕾完成签到,获得积分10
15秒前
西西发布了新的文献求助10
15秒前
roy完成签到,获得积分10
16秒前
yuanzi发布了新的文献求助10
17秒前
waikeyan完成签到,获得积分10
17秒前
17秒前
17秒前
zhukeqinag发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
嘿哈发布了新的文献求助10
19秒前
派大星完成签到,获得积分10
20秒前
bkagyin应助yuanzi采纳,获得10
21秒前
21秒前
科研通AI2S应助Ethan采纳,获得20
22秒前
22秒前
情怀应助卿卿采纳,获得10
23秒前
liubai发布了新的文献求助10
24秒前
smj发布了新的文献求助10
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291