亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting potential microbe–disease associations based on multi-source features and deep learning

人工智能 计算机科学 机器学习 分类器(UML) 自编码 随机森林 深度学习 疾病 特征选择 人工神经网络 聚类分析 模式识别(心理学) 计算生物学 生物 医学 病理
作者
Liugen Wang,Wang Yan,Chenxu Xuan,Bai Zhang,Hanwen Wu,Jie Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad255
摘要

Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MT完成签到,获得积分20
7秒前
27秒前
28秒前
孙文远发布了新的文献求助10
30秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
toutou应助科研通管家采纳,获得10
49秒前
无花果应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
英俊的铭应助科研通管家采纳,获得10
49秒前
纳米大亨完成签到,获得积分10
51秒前
hlq完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小蘑菇应助老不靠谱采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
老不靠谱发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
toutou应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
ztl完成签到 ,获得积分10
2分钟前
2分钟前
隐形曼青应助lllll采纳,获得10
2分钟前
3分钟前
不器完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423