已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting potential microbe–disease associations based on multi-source features and deep learning

人工智能 计算机科学 机器学习 分类器(UML) 自编码 随机森林 深度学习 疾病 特征选择 人工神经网络 聚类分析 模式识别(心理学) 计算生物学 生物 医学 病理
作者
Liugen Wang,Wang Yan,Chenxu Xuan,Bai Zhang,Hanwen Wu,Jie Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad255
摘要

Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助Candy采纳,获得10
3秒前
NKKKKKK完成签到,获得积分10
3秒前
晚棠发布了新的文献求助10
3秒前
f1mike110发布了新的文献求助30
3秒前
风吹而过完成签到 ,获得积分10
4秒前
5秒前
liwang9301完成签到,获得积分10
6秒前
聆(*^_^*)完成签到 ,获得积分10
6秒前
7秒前
NKKKKKK发布了新的文献求助10
7秒前
9秒前
熊逍发布了新的文献求助10
10秒前
江枫渔火完成签到 ,获得积分10
13秒前
没见云发布了新的文献求助10
13秒前
尊敬寒松发布了新的文献求助60
17秒前
18秒前
刻苦的冬易完成签到 ,获得积分10
21秒前
脑洞疼应助f1mike110采纳,获得10
21秒前
Orange应助超级野狼采纳,获得10
21秒前
22秒前
pay发布了新的文献求助10
24秒前
25秒前
细心怀亦完成签到 ,获得积分10
29秒前
sssyyy发布了新的文献求助10
30秒前
Guts发布了新的文献求助10
30秒前
35秒前
zl13332完成签到 ,获得积分10
37秒前
shy完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
40秒前
111发布了新的文献求助10
42秒前
42秒前
45秒前
46秒前
马宁婧完成签到 ,获得积分10
49秒前
柠木完成签到 ,获得积分10
51秒前
Dr.c发布了新的文献求助10
53秒前
54秒前
小明完成签到,获得积分10
55秒前
Airsjz发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387