亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting potential microbe–disease associations based on multi-source features and deep learning

人工智能 计算机科学 机器学习 分类器(UML) 自编码 随机森林 深度学习 疾病 特征选择 人工神经网络 聚类分析 模式识别(心理学) 计算生物学 生物 医学 病理
作者
Liugen Wang,Wang Yan,Chenxu Xuan,Bai Zhang,Hanwen Wu,Jie Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad255
摘要

Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
zqq完成签到,获得积分0
11秒前
Demon724完成签到,获得积分10
22秒前
htc1996完成签到,获得积分10
25秒前
lin完成签到 ,获得积分10
31秒前
牛油果完成签到,获得积分10
35秒前
47秒前
48秒前
TJ发布了新的文献求助10
54秒前
kekeke777完成签到 ,获得积分10
54秒前
TEMPO发布了新的文献求助10
54秒前
oleskarabach发布了新的文献求助10
54秒前
56秒前
Ru完成签到 ,获得积分10
1分钟前
TEMPO完成签到,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
归去来兮应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
维奈克拉应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
George完成签到,获得积分10
1分钟前
陈文学完成签到,获得积分10
1分钟前
1分钟前
情红锐完成签到,获得积分10
1分钟前
陈文学发布了新的文献求助10
1分钟前
1分钟前
今后应助情红锐采纳,获得10
1分钟前
大恐龙的噗噗完成签到,获得积分10
1分钟前
Sunziy完成签到,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
1分钟前
cy完成签到 ,获得积分10
1分钟前
2分钟前
肉肉完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639533
求助须知:如何正确求助?哪些是违规求助? 4748853
关于积分的说明 15006598
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563735
邀请新用户注册赠送积分活动 1522691
关于科研通互助平台的介绍 1482394