Predicting potential microbe–disease associations based on multi-source features and deep learning

人工智能 计算机科学 机器学习 分类器(UML) 自编码 随机森林 深度学习 疾病 特征选择 人工神经网络 聚类分析 模式识别(心理学) 计算生物学 生物 医学 病理
作者
Liugen Wang,Wang Yan,Chenxu Xuan,Bai Zhang,Hanwen Wu,Jie Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad255
摘要

Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李白完成签到,获得积分10
1秒前
风吹阔叶发布了新的文献求助30
1秒前
1秒前
2秒前
qing发布了新的文献求助30
2秒前
隐形小鸽子完成签到,获得积分20
2秒前
2秒前
文艺的青旋完成签到 ,获得积分10
3秒前
善学以致用应助sunshine采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
大模型应助mao采纳,获得10
4秒前
sterben完成签到,获得积分10
6秒前
安雯完成签到 ,获得积分10
6秒前
xiaokezhang发布了新的文献求助10
8秒前
8秒前
义气的水蓝完成签到 ,获得积分10
9秒前
4.8关闭了4.8文献求助
10秒前
lin发布了新的文献求助10
13秒前
顾矜应助盲点采纳,获得10
13秒前
14秒前
14秒前
haoooooooooooooo应助LSH970829采纳,获得10
15秒前
搜集达人应助求知的周采纳,获得30
15秒前
15秒前
研友_ZlqeD8完成签到,获得积分10
15秒前
15秒前
15秒前
领导范儿应助juaner采纳,获得10
16秒前
16秒前
17秒前
17秒前
Orange应助聪明新梅采纳,获得10
18秒前
18秒前
Mashiro发布了新的文献求助10
18秒前
Zhang发布了新的文献求助10
18秒前
JM发布了新的文献求助10
18秒前
朱云发布了新的文献求助10
19秒前
杨佳宁发布了新的文献求助10
19秒前
十号发布了新的文献求助10
20秒前
落后的乌龟应助小太阳采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049