A Dynamic Weights-Based Wavelet Attention Neural Network for Defect Detection

计算机科学 特征(语言学) 人工智能 小波 噪音(视频) 模式识别(心理学) 滤波器(信号处理) 卷积(计算机科学) 人工神经网络 代表(政治) 计算机视觉 图像(数学) 哲学 语言学 政治 政治学 法学
作者
Jinhai Liu,He Zhao,Zhaolin Chen,Qiannan Wang,Xiangkai Shen,Huaguang Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:8
标识
DOI:10.1109/tnnls.2023.3292512
摘要

Automatic defect detection plays an important role in industrial production. Deep learning-based defect detection methods have achieved promising results. However, there are still two challenges in the current defect detection methods: 1) high-precision detection of weak defects is limited and 2) it is difficult for current defect detection methods to achieve satisfactory results dealing with strong background noise. This article proposes a dynamic weights-based wavelet attention neural network (DWWA-Net) to address these issues, which can enhance the feature representation of defects and simultaneously denoise the image, thereby improving the detection accuracy of weak defects and defects under strong background noise. First, wavelet neural networks and dynamic wavelet convolution networks (DWCNets) are presented, which can effectively filter background noise and improve model convergence. Second, a multiview attention module is designed, which can direct the network attention toward potential targets, thereby guaranteeing the accuracy for detecting weak defects. Finally, a feature feedback module is proposed, which can enhance the feature information of defects to further improve the weak defect detection accuracy. The DWWA-Net can be used for defect detection in multiple industrial fields. Experiment results illustrate that the proposed method outperforms the state-of-the-art methods (mean precision: GC10-DET: 6.0%; NEU: 4.3%). The code is made in https://github.com/781458112/DWWA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研靓仔发布了新的文献求助10
3秒前
Apocalypse_zjz完成签到,获得积分10
3秒前
子车半烟完成签到,获得积分10
3秒前
竹外桃花完成签到,获得积分10
4秒前
可爱的函函应助建安采纳,获得10
4秒前
5秒前
Phoenix完成签到 ,获得积分10
5秒前
竹外桃花发布了新的文献求助10
6秒前
8秒前
万能图书馆应助mimi采纳,获得10
8秒前
bowler完成签到,获得积分10
9秒前
天才小能喵完成签到 ,获得积分0
9秒前
10秒前
笨笨歌曲发布了新的文献求助10
13秒前
芝士土拨鼠完成签到,获得积分10
14秒前
红鲤完成签到,获得积分10
14秒前
白鸽应助stop here采纳,获得10
15秒前
李健应助凤凤采纳,获得10
16秒前
16秒前
麟儿完成签到,获得积分20
17秒前
文静芸遥发布了新的文献求助10
17秒前
17秒前
lixiao完成签到,获得积分10
17秒前
18秒前
莫西莫西关注了科研通微信公众号
20秒前
Twikky完成签到,获得积分10
21秒前
鑫博发布了新的文献求助10
21秒前
22秒前
22秒前
桐桐应助暴龙战士图图采纳,获得10
22秒前
小小水完成签到,获得积分10
22秒前
科研靓仔发布了新的文献求助10
22秒前
LL发布了新的文献求助10
23秒前
建安发布了新的文献求助10
23秒前
23秒前
applelpypies完成签到 ,获得积分10
24秒前
鲨鱼完成签到,获得积分10
24秒前
小二郎应助chlorine采纳,获得10
24秒前
遂安完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023