亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

REMS: Recommending Extract Method Refactoring Opportunities via Multi-view Representation of Code Property Graph

重构代码 计算机科学 人工智能 机器学习 启发式 编码(集合论) 图形 软件 数据挖掘 程序设计语言 理论计算机科学 操作系统 集合(抽象数据类型)
作者
Di Cui,Qiangqiang Wang,Siqi Wang,Jianlei Chi,Jianan Li,Lu Wang,Qingshan Li
标识
DOI:10.1109/icpc58990.2023.00034
摘要

Extract Method is one of the most frequently performed refactoring operations for the decomposition of large and complex methods, which can also be combined with other refactoring operations to remove a variety of design flaws. Several Extract Method refactoring tools have been proposed based on the quantification of extraction criteria. To the best of our knowledge, state-of-the-art related techniques can be broadly divided into two categories: the first line is non-machine-learning-based approaches built on heuristics, and the second line is machine learning-based approaches built on historical data. Most of these approaches characterize the extraction criteria by deriving software metrics from fine-grained code properties. However, in most cases, these metrics can be challenging to concretize, and their selections and thresholds also largely rely on expert knowledge. Thus, in this paper, we propose an approach to automatically recommend Extract Method refactoring opportunities named REMS via mining multi-view representations from code property graph. We fuse various representations together using compact bilinear pooling and further train machine learning classifiers to guide the extraction of suitable lines of code as new method. We evaluate our approach on two publicly available datasets. The results show that our approach outperforms five state-of-the-art refactoring tools including GEMS, JExtract, SEMI, JDeodorant, and Segmentation in effectiveness and usefulness. Our approach demonstrates an increase of 29% in precision, 15% in recall, and 23% in f1-measure. The results also unveil practical suggestions and provide new insights that benefit additional extract-related refactoring techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助小明采纳,获得10
10秒前
赎罪完成签到 ,获得积分10
1分钟前
automan发布了新的文献求助50
1分钟前
LONG完成签到 ,获得积分10
1分钟前
苗条盼山完成签到,获得积分10
1分钟前
木目丶完成签到 ,获得积分10
1分钟前
1分钟前
骆驼林子完成签到 ,获得积分10
1分钟前
阳光大山完成签到 ,获得积分10
1分钟前
郭老师发布了新的文献求助10
1分钟前
Leofar完成签到 ,获得积分10
2分钟前
张凯完成签到,获得积分20
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
CodeCraft应助葱葱花卷采纳,获得10
2分钟前
2分钟前
一粟完成签到 ,获得积分10
2分钟前
小明发布了新的文献求助10
2分钟前
LK完成签到,获得积分10
2分钟前
king完成签到 ,获得积分10
2分钟前
今后应助于冰清采纳,获得10
2分钟前
2分钟前
于冰清发布了新的文献求助10
2分钟前
LXx完成签到 ,获得积分10
3分钟前
blenx完成签到,获得积分10
3分钟前
tiger完成签到,获得积分10
3分钟前
咚咚完成签到 ,获得积分10
3分钟前
张凯发布了新的文献求助10
3分钟前
月冷完成签到 ,获得积分10
3分钟前
yangyeye完成签到 ,获得积分10
3分钟前
jyy完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
w1x2123完成签到,获得积分10
4分钟前
邮电部诗人完成签到,获得积分10
4分钟前
5分钟前
mmmc大好发布了新的文献求助10
5分钟前
5分钟前
mmmc大好发布了新的文献求助10
5分钟前
6分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849802
求助须知:如何正确求助?哪些是违规求助? 6252005
关于积分的说明 15624797
捐赠科研通 4966199
什么是DOI,文献DOI怎么找? 2677797
邀请新用户注册赠送积分活动 1622125
关于科研通互助平台的介绍 1578202