Review of Visualization Approaches in Deep Learning Models of Glaucoma

可解释性 工作流程 计算机科学 可视化 数据科学 可用性 概化理论 人工智能 青光眼 人机交互 机器学习 医学 心理学 数据库 眼科 发展心理学
作者
Byoungyoung Gu,Sophia Sidhu,Robert N. Weinreb,Mark Christopher,Linda M. Zangwill,Sally L. Baxter
出处
期刊:Asia-Pacific journal of ophthalmology [Lippincott Williams & Wilkins]
卷期号:12 (4): 392-401 被引量:8
标识
DOI:10.1097/apo.0000000000000619
摘要

Glaucoma is a major cause of irreversible blindness worldwide. As glaucoma often presents without symptoms, early detection and intervention are important in delaying progression. Deep learning (DL) has emerged as a rapidly advancing tool to help achieve these objectives. In this narrative review, data types and visualization approaches for presenting model predictions, including models based on tabular data, functional data, and/or structural data, are summarized, and the importance of data source diversity for improving the utility and generalizability of DL models is explored. Examples of innovative approaches to understanding predictions of artificial intelligence (AI) models and alignment with clinicians are provided. In addition, methods to enhance the interpretability of clinical features from tabular data used to train AI models are investigated. Examples of published DL models that include interfaces to facilitate end-user engagement and minimize cognitive and time burdens are highlighted. The stages of integrating AI models into existing clinical workflows are reviewed, and challenges are discussed. Reviewing these approaches may help inform the generation of user-friendly interfaces that are successfully integrated into clinical information systems. This review details key principles regarding visualization approaches in DL models of glaucoma. The articles reviewed here focused on usability, explainability, and promotion of clinician trust to encourage wider adoption for clinical use. These studies demonstrate important progress in addressing visualization and explainability issues required for successful real-world implementation of DL models in glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子西发布了新的文献求助10
1秒前
彭于彦祖应助Mac采纳,获得30
1秒前
PU聚氨酯完成签到,获得积分10
1秒前
南小木完成签到,获得积分10
1秒前
宋宋发布了新的文献求助10
2秒前
sota完成签到,获得积分10
2秒前
易安完成签到,获得积分10
2秒前
3秒前
田果完成签到,获得积分20
3秒前
za==完成签到,获得积分10
3秒前
ywb完成签到,获得积分10
4秒前
kingcoming完成签到,获得积分10
4秒前
aragakkl完成签到,获得积分10
5秒前
mojito完成签到,获得积分10
5秒前
mwy发布了新的文献求助10
5秒前
蛋黄派完成签到,获得积分10
6秒前
搜集达人应助小次之山采纳,获得50
6秒前
6秒前
默默白开水完成签到 ,获得积分10
6秒前
KKKK完成签到,获得积分10
7秒前
xcx完成签到,获得积分10
7秒前
8秒前
duke完成签到,获得积分10
8秒前
keyaner完成签到,获得积分10
8秒前
ywb发布了新的文献求助30
9秒前
机智谷蕊完成签到,获得积分10
9秒前
Leung完成签到,获得积分10
10秒前
研友_LJGXgn完成签到,获得积分10
10秒前
泡泡球完成签到,获得积分10
11秒前
张益达完成签到,获得积分10
11秒前
rinki01发布了新的文献求助10
11秒前
CHEN.CHENG完成签到,获得积分10
12秒前
pcr163应助栀初采纳,获得80
12秒前
Jasper应助南至采纳,获得10
12秒前
优秀的乐曲完成签到,获得积分10
12秒前
小余发布了新的文献求助10
13秒前
Jasper应助kang采纳,获得10
14秒前
山260完成签到 ,获得积分10
14秒前
14秒前
打打应助冷傲的水儿采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582