Review of Visualization Approaches in Deep Learning Models of Glaucoma

可解释性 工作流程 计算机科学 可视化 数据科学 可用性 概化理论 人工智能 青光眼 人机交互 机器学习 医学 心理学 发展心理学 数据库 眼科
作者
Byoungyoung Gu,Sophia Sidhu,Robert N. Weinreb,Mark Christopher,Linda M. Zangwill,Sally L. Baxter
出处
期刊:Asia-Pacific journal of ophthalmology 卷期号:12 (4): 392-401 被引量:8
标识
DOI:10.1097/apo.0000000000000619
摘要

Glaucoma is a major cause of irreversible blindness worldwide. As glaucoma often presents without symptoms, early detection and intervention are important in delaying progression. Deep learning (DL) has emerged as a rapidly advancing tool to help achieve these objectives. In this narrative review, data types and visualization approaches for presenting model predictions, including models based on tabular data, functional data, and/or structural data, are summarized, and the importance of data source diversity for improving the utility and generalizability of DL models is explored. Examples of innovative approaches to understanding predictions of artificial intelligence (AI) models and alignment with clinicians are provided. In addition, methods to enhance the interpretability of clinical features from tabular data used to train AI models are investigated. Examples of published DL models that include interfaces to facilitate end-user engagement and minimize cognitive and time burdens are highlighted. The stages of integrating AI models into existing clinical workflows are reviewed, and challenges are discussed. Reviewing these approaches may help inform the generation of user-friendly interfaces that are successfully integrated into clinical information systems. This review details key principles regarding visualization approaches in DL models of glaucoma. The articles reviewed here focused on usability, explainability, and promotion of clinician trust to encourage wider adoption for clinical use. These studies demonstrate important progress in addressing visualization and explainability issues required for successful real-world implementation of DL models in glaucoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朱光辉完成签到,获得积分20
2秒前
3秒前
清凉茶完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
打打应助小小科研人采纳,获得10
6秒前
852应助小小科研人采纳,获得10
6秒前
kkkkkw发布了新的文献求助30
6秒前
港岛妹妹应助马才学采纳,获得10
6秒前
7秒前
敏感初露发布了新的文献求助10
7秒前
zhang发布了新的文献求助10
7秒前
maozcmt应助yueyue采纳,获得10
8秒前
11号楼203发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
大模型应助敏感初露采纳,获得10
11秒前
hao发布了新的文献求助10
11秒前
dydy发布了新的文献求助10
11秒前
11秒前
12发布了新的文献求助10
11秒前
13秒前
13秒前
Ann发布了新的文献求助10
14秒前
大鱼发布了新的文献求助10
14秒前
英姑应助阔达的小笼包采纳,获得30
15秒前
茉莉发布了新的文献求助10
15秒前
16秒前
17秒前
frankwzp完成签到,获得积分10
17秒前
Novice6354完成签到 ,获得积分10
17秒前
18秒前
情怀应助Tiramisu_rainy采纳,获得10
19秒前
刘珊妹完成签到,获得积分10
19秒前
小马甲应助dydy采纳,获得10
20秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248291
求助须知:如何正确求助?哪些是违规求助? 2891641
关于积分的说明 8268146
捐赠科研通 2559658
什么是DOI,文献DOI怎么找? 1388479
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627698