有界函数
数学
对数
领域(数学分析)
Dirichlet分布
边界(拓扑)
功能(生物学)
数学分析
边值问题
Dirichlet边界条件
焊剂(冶金)
纯数学
材料科学
进化生物学
冶金
生物
标识
DOI:10.1142/s0218202523400031
摘要
In this paper, we consider the following system: [Formula: see text] in a smoothly bounded domain [Formula: see text] with [Formula: see text] and a given function [Formula: see text] with [Formula: see text] It is proved that if [Formula: see text] then for appropriately small initial data an associated no-flux/no-flux/Dirichlet initial-boundary value problem is globally solvable in the classical sense, and that if [Formula: see text] then under a different but still suitable smallness restriction of the initial data, a corresponding initial-boundary value problem subject to no-flux/no-flux/Dirichlet boundary conditions admits a unique classical solution which is globally bounded and approaches a constant equilibria [Formula: see text] in [Formula: see text] as [Formula: see text] with [Formula: see text]
科研通智能强力驱动
Strongly Powered by AbleSci AI