Snap25 attenuates neuronal injury via reducing ferroptosis in acute ischemic stroke

基因沉默 基因敲除 快照25 RNA干扰 小干扰RNA 药理学 医学 化学 转染 基因 核糖核酸 生物化学 小泡 突触小泡
作者
Wenwen Si,Bin Sun,Luo Jing,Zhen Li,Yuhong Dou,Qizhang Wang
出处
期刊:Experimental Neurology [Elsevier]
卷期号:367: 114476-114476 被引量:5
标识
DOI:10.1016/j.expneurol.2023.114476
摘要

Due to the limited clinical treatment options for acute ischemic stroke (AIS), there is still an urgent requirement for in-depth research on the pathogenesis of AIS and the development of efficient therapeutic approaches and agents. Literature reports reveal that ferroptosis may play an important role in the pathogenesis of AIS. However, the specific mechanism and the molecular target of action of ferroptosis in AIS injury remains unclear. In this study, we constructed AIS rat and PC12 cell models. We applied RNAi-mediated knockdown and gene overexpression technologies to investigate whether Snap25 (Synaptosome-associated protein 25 kDa) can regulate the level of AIS damage by interfering with the level of ferroptosis in AIS. The in vivo and in vitro results revealed that the level of ferroptosis significantly increased in the AIS model. Snap25 gene overexpression significantly inhibited the ferroptosis level and decreased the AIS damage and OGD/R injury level in the model group. Snap25 silencing exacerbated the ferroptosis level and aggravated OGD/R injury in PC12 cells. The overexpression and silencing of Snap25 can significantly affect the expression level of ROS, suggesting that the regulatory effect on the ROS level may be an important factor in regulating ferroptosis in AIS by Snap25. In conclusion, the findings of this study suggested that Snap25 has a protective effect against ischemia/reperfusion injury by reducing ROS levels and ferroptosis levels. This study further confirmed the involvement of ferroptosis in the process of AIS injury and explored the regulatory mechanism of Snap25 on the ferroptosis level in AIS, which could provide a promising therapeutic target for ischemic stroke treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhoucanshang发布了新的文献求助10
刚刚
刚刚
跳跃续完成签到,获得积分10
1秒前
xiaoyu完成签到,获得积分10
1秒前
科研通AI5应助箱子采纳,获得10
2秒前
Echo发布了新的文献求助10
2秒前
CC发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
DDDD源发布了新的文献求助10
3秒前
lawrencewong发布了新的文献求助10
5秒前
5秒前
8秒前
8秒前
欢喜烧鹅完成签到,获得积分10
8秒前
sam应助玉龙采纳,获得30
9秒前
9秒前
9秒前
雅鹿贝鲁完成签到,获得积分10
10秒前
传奇3应助111采纳,获得10
10秒前
方越完成签到,获得积分10
11秒前
11秒前
星辰大海应助杨66采纳,获得10
11秒前
11秒前
伶俜完成签到,获得积分10
12秒前
万能图书馆应助DDDD源采纳,获得10
12秒前
科研通AI5应助JONG采纳,获得30
12秒前
Song发布了新的文献求助10
13秒前
16秒前
上官若男应助滴滴哒哒采纳,获得10
16秒前
16秒前
17秒前
18秒前
19秒前
快乐人达关注了科研通微信公众号
19秒前
伶俜发布了新的文献求助30
20秒前
阳光的羊完成签到,获得积分10
20秒前
pierce发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476698
求助须知:如何正确求助?哪些是违规求助? 3068270
关于积分的说明 9107322
捐赠科研通 2759775
什么是DOI,文献DOI怎么找? 1514279
邀请新用户注册赠送积分活动 700142
科研通“疑难数据库(出版商)”最低求助积分说明 699329