Predicting Complications in Breast Reconstruction

医学 前瞻性队列研究 乳房再造术 队列 外科 置信区间 回顾性队列研究 乳房切除术 队列研究 并发症 乳腺癌 内科学 癌症
作者
Sterling Braun,Lauren M. Sinik,Anne Meyer,Kelsey E. Larson,James A. Butterworth
出处
期刊:Annals of Plastic Surgery [Lippincott Williams & Wilkins]
卷期号:91 (2): 282-286 被引量:8
标识
DOI:10.1097/sap.0000000000003621
摘要

Importance Necrosis of the nipple-areolar complex (NAC) is the Achilles heel of nipple-sparing mastectomy (NSM), and it can be difficult to assess which patients are at risk of this complication ( Ann Surg Oncol 2014;21(1):100–106). Objective To develop and validate a model that accurately predicts NAC necrosis in a prospective cohort. Design Data were collected from a retrospectively reviewed cohort of patients who underwent NSM and immediate breast reconstruction between January 2015 and July 2019 at our institution, a high -volume, tertiary academic center. Preoperative clinical characteristics, operative variables, and postoperative complications were collected and linked to NAC outcomes. These results were utilized to train a random-forest classification model to predict necrosis. Our model was then validated in a prospective cohort of patients undergoing NSM with immediate breast reconstruction between June 2020 and June 2021. Results Model predictions of NAC necrosis in the prospective cohort achieved an accuracy of 97% (95% confidence interval [CI], 0.89–0.99; P = 0.009). This was consistent with the accuracy of predictions in the retrospective cohort (0.97; 95% CI, 0.95–0.99). A high degree of specificity (0.98; 95% CI, 0.90–1.0) and negative predictive value (0.98; 95% CI, 0.90–1.0) were also achieved prospectively. Implant weight was the most predictive of increased risk, with weights greater than 400 g most strongly associated with NAC ischemia. Conclusions and Relevance Our machine learning model prospectively predicted cases of NAC necrosis with a high degree of accuracy. An important predictor was implant weight, a modifiable risk factor that could be adjusted to mitigate the risk of NAC necrosis and associated postoperative complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的靖儿完成签到 ,获得积分10
1秒前
wanci应助快乐小狗采纳,获得10
2秒前
卡卡光波完成签到,获得积分10
2秒前
虚心的老头完成签到,获得积分10
2秒前
Ava应助Orange采纳,获得10
2秒前
玄音完成签到,获得积分10
3秒前
zzw完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
7秒前
7秒前
7秒前
Akim应助bhappy21采纳,获得10
9秒前
妮妮完成签到,获得积分10
10秒前
12秒前
12秒前
Foura发布了新的文献求助10
13秒前
13秒前
kobegirl发布了新的文献求助10
13秒前
科研通AI5应助sxmt123456789采纳,获得10
13秒前
Bake发布了新的文献求助10
13秒前
13秒前
will发布了新的文献求助10
13秒前
快乐的忆安完成签到,获得积分10
14秒前
二二完成签到,获得积分10
14秒前
无为完成签到,获得积分10
14秒前
SGLY完成签到,获得积分10
14秒前
洋洋发布了新的文献求助30
14秒前
14秒前
15秒前
17秒前
17秒前
18秒前
ShyerC完成签到,获得积分10
19秒前
19秒前
仁爱笑白发布了新的文献求助10
20秒前
浮游应助义气的羽毛采纳,获得10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503