Multiscale Attention Networks for Pavement Defect Detection

计算机科学 卷积(计算机科学) 编码器 像素 卷积神经网络 特征(语言学) 人工智能 比例(比率) 模式识别(心理学) 水准点(测量) 特征提取 数据挖掘 人工神经网络 大地测量学 量子力学 物理 语言学 哲学 地理 操作系统
作者
Junde Chen,Yuxin Wen,Yaser A. Nanehkaran,Defu Zhang,Adnan Zeb
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:25
标识
DOI:10.1109/tim.2023.3298391
摘要

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. Instead of the original 3×3 convolution, the multi-scale convolution kernels are utilized in depth-wise separable convolution layers of the network. Further, the hybrid attention mechanism is separately incorporated into the encoder and decoder modules to infer the significance of spatial points and inter-channel relationship features for the input intermediate feature maps. The proposed approach achieves state-of-the-art performance on two publicly-available benchmark datasets, i.e., the Crack500 (500 crack images with 2,000×1,500 pixels) and CFD (118 crack images with 480×320 pixels) datasets. The mean intersection over union ( MIoU ) of the proposed approach on these two datasets reaches 0.7219 and 0.7788, respectively. Ablation experiments show that the multi-scale convolution and hybrid attention modules can effectively help the model extract high-level feature representations and generate more accurate pavement crack segmentation results. We further test the model on locally collected pavement crack images (131 images with 1024×768 pixels) and it achieves a satisfactory result. The proposed approach realizes the MIoU of 0.6514 on the local dataset and outperforms other compared baseline methods. Experimental findings demonstrate the validity and feasibility of the proposed approach and it provides a viable solution for pavement crack detection in practical application scenarios. Our code is available at https://github.com/xtu502/pavement-defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助11采纳,获得10
1秒前
科研通AI2S应助瘦瘦麦片采纳,获得10
1秒前
2秒前
风趣薯片发布了新的文献求助10
2秒前
欧阳完成签到,获得积分10
3秒前
英姑应助细心柚子采纳,获得10
3秒前
躺王发布了新的文献求助30
4秒前
5秒前
5秒前
顺心代云完成签到 ,获得积分10
5秒前
Cech发布了新的文献求助10
5秒前
玛卡巴卡发布了新的文献求助10
6秒前
Owen应助竹萱采纳,获得10
6秒前
7秒前
老丫大侠完成签到 ,获得积分10
8秒前
单薄雪枫完成签到,获得积分10
9秒前
cslghe发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
李健发布了新的文献求助10
10秒前
11秒前
我是老大应助ssx采纳,获得20
11秒前
深情安青应助Cech采纳,获得10
11秒前
humeijiao发布了新的文献求助10
12秒前
13秒前
13秒前
shunlibiye完成签到,获得积分10
13秒前
P_完成签到,获得积分10
15秒前
科研通AI2S应助温婉的从凝采纳,获得10
15秒前
16秒前
17秒前
yunzheng完成签到,获得积分20
17秒前
大个应助奈芙莲采纳,获得10
18秒前
米粒发布了新的文献求助10
19秒前
汉堡包应助Coke采纳,获得10
20秒前
卡卡西应助zsq采纳,获得30
20秒前
面壁思过应助Coke采纳,获得30
20秒前
天天快乐应助Coke采纳,获得10
20秒前
科目三应助Coke采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975986
求助须知:如何正确求助?哪些是违规求助? 3520289
关于积分的说明 11202025
捐赠科研通 3256778
什么是DOI,文献DOI怎么找? 1798453
邀请新用户注册赠送积分活动 877605
科研通“疑难数据库(出版商)”最低求助积分说明 806482