亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale Attention Networks for Pavement Defect Detection

计算机科学 卷积(计算机科学) 编码器 像素 卷积神经网络 特征(语言学) 人工智能 比例(比率) 模式识别(心理学) 水准点(测量) 特征提取 数据挖掘 人工神经网络 操作系统 量子力学 物理 哲学 地理 语言学 大地测量学
作者
Junde Chen,Yuxin Wen,Yaser A. Nanehkaran,Defu Zhang,Adnan Zeb
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:63
标识
DOI:10.1109/tim.2023.3298391
摘要

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. Instead of the original 3×3 convolution, the multi-scale convolution kernels are utilized in depth-wise separable convolution layers of the network. Further, the hybrid attention mechanism is separately incorporated into the encoder and decoder modules to infer the significance of spatial points and inter-channel relationship features for the input intermediate feature maps. The proposed approach achieves state-of-the-art performance on two publicly-available benchmark datasets, i.e., the Crack500 (500 crack images with 2,000×1,500 pixels) and CFD (118 crack images with 480×320 pixels) datasets. The mean intersection over union ( MIoU ) of the proposed approach on these two datasets reaches 0.7219 and 0.7788, respectively. Ablation experiments show that the multi-scale convolution and hybrid attention modules can effectively help the model extract high-level feature representations and generate more accurate pavement crack segmentation results. We further test the model on locally collected pavement crack images (131 images with 1024×768 pixels) and it achieves a satisfactory result. The proposed approach realizes the MIoU of 0.6514 on the local dataset and outperforms other compared baseline methods. Experimental findings demonstrate the validity and feasibility of the proposed approach and it provides a viable solution for pavement crack detection in practical application scenarios. Our code is available at https://github.com/xtu502/pavement-defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和风完成签到 ,获得积分10
1秒前
俏以完成签到,获得积分10
36秒前
体贴静竹完成签到 ,获得积分10
53秒前
1分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
清晨仪仪发布了新的文献求助10
2分钟前
2分钟前
朴素尔阳发布了新的文献求助10
2分钟前
2分钟前
webmaster完成签到,获得积分10
2分钟前
向东是大海完成签到,获得积分10
2分钟前
2分钟前
CC发布了新的文献求助10
3分钟前
万能图书馆应助清晨仪仪采纳,获得30
3分钟前
Yihan完成签到,获得积分10
3分钟前
科研王者发布了新的文献求助10
3分钟前
老万的小迷弟完成签到,获得积分10
3分钟前
JoeyJin完成签到,获得积分10
3分钟前
我是老大应助科研王者采纳,获得10
3分钟前
4分钟前
yeeeee发布了新的文献求助10
4分钟前
ttkx发布了新的文献求助10
4分钟前
CipherSage应助yeeeee采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
artos发布了新的文献求助30
5分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
科研通AI6应助artos采纳,获得10
6分钟前
华仔应助CC采纳,获得30
6分钟前
7分钟前
CC发布了新的文献求助30
7分钟前
执着梦柏完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
SciGPT应助科研通管家采纳,获得10
8分钟前
8分钟前
清晨仪仪发布了新的文献求助30
8分钟前
8分钟前
步念发布了新的文献求助30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769648
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053