Multiscale Attention Networks for Pavement Defect Detection

计算机科学 卷积(计算机科学) 编码器 像素 卷积神经网络 特征(语言学) 人工智能 比例(比率) 模式识别(心理学) 水准点(测量) 特征提取 数据挖掘 人工神经网络 大地测量学 量子力学 物理 语言学 哲学 地理 操作系统
作者
Junde Chen,Yuxin Wen,Y. A. Nanehkaran,Defu Zhang,Adnan Zeb
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:15
标识
DOI:10.1109/tim.2023.3298391
摘要

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. Instead of the original 3×3 convolution, the multi-scale convolution kernels are utilized in depth-wise separable convolution layers of the network. Further, the hybrid attention mechanism is separately incorporated into the encoder and decoder modules to infer the significance of spatial points and inter-channel relationship features for the input intermediate feature maps. The proposed approach achieves state-of-the-art performance on two publicly-available benchmark datasets, i.e., the Crack500 (500 crack images with 2,000×1,500 pixels) and CFD (118 crack images with 480×320 pixels) datasets. The mean intersection over union ( MIoU ) of the proposed approach on these two datasets reaches 0.7219 and 0.7788, respectively. Ablation experiments show that the multi-scale convolution and hybrid attention modules can effectively help the model extract high-level feature representations and generate more accurate pavement crack segmentation results. We further test the model on locally collected pavement crack images (131 images with 1024×768 pixels) and it achieves a satisfactory result. The proposed approach realizes the MIoU of 0.6514 on the local dataset and outperforms other compared baseline methods. Experimental findings demonstrate the validity and feasibility of the proposed approach and it provides a viable solution for pavement crack detection in practical application scenarios. Our code is available at https://github.com/xtu502/pavement-defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助研友_V8Qmr8采纳,获得10
1秒前
在水一方应助慢慢采纳,获得10
1秒前
科研通AI2S应助愉快的宛儿采纳,获得10
2秒前
2秒前
2秒前
2秒前
一龙完成签到,获得积分10
3秒前
我是老大应助茉莉采纳,获得10
3秒前
3秒前
感动的寒风完成签到,获得积分10
3秒前
4秒前
柠小檬c发布了新的文献求助10
4秒前
4秒前
牛奶开水完成签到 ,获得积分10
5秒前
5秒前
zzz完成签到,获得积分20
5秒前
6秒前
科研通AI2S应助小福泥采纳,获得30
6秒前
nanonamo发布了新的文献求助10
7秒前
7秒前
7秒前
Month完成签到,获得积分10
7秒前
7秒前
7秒前
龙傲天完成签到,获得积分10
7秒前
一如既往发布了新的文献求助10
8秒前
8秒前
h268179发布了新的文献求助10
9秒前
YHY完成签到,获得积分10
9秒前
10秒前
Month发布了新的文献求助10
10秒前
cheese完成签到,获得积分10
10秒前
11秒前
11秒前
关七应助加菲丰丰采纳,获得10
11秒前
FashionBoy应助笨笨松采纳,获得10
13秒前
14秒前
CipherSage应助Arthur采纳,获得10
14秒前
所所应助BETCHA采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866