Multiscale Attention Networks for Pavement Defect Detection

计算机科学 卷积(计算机科学) 编码器 像素 卷积神经网络 特征(语言学) 人工智能 比例(比率) 模式识别(心理学) 水准点(测量) 特征提取 数据挖掘 人工神经网络 大地测量学 量子力学 物理 语言学 哲学 地理 操作系统
作者
Junde Chen,Yuxin Wen,Yaser A. Nanehkaran,Defu Zhang,Adnan Zeb
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:25
标识
DOI:10.1109/tim.2023.3298391
摘要

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. Instead of the original 3×3 convolution, the multi-scale convolution kernels are utilized in depth-wise separable convolution layers of the network. Further, the hybrid attention mechanism is separately incorporated into the encoder and decoder modules to infer the significance of spatial points and inter-channel relationship features for the input intermediate feature maps. The proposed approach achieves state-of-the-art performance on two publicly-available benchmark datasets, i.e., the Crack500 (500 crack images with 2,000×1,500 pixels) and CFD (118 crack images with 480×320 pixels) datasets. The mean intersection over union ( MIoU ) of the proposed approach on these two datasets reaches 0.7219 and 0.7788, respectively. Ablation experiments show that the multi-scale convolution and hybrid attention modules can effectively help the model extract high-level feature representations and generate more accurate pavement crack segmentation results. We further test the model on locally collected pavement crack images (131 images with 1024×768 pixels) and it achieves a satisfactory result. The proposed approach realizes the MIoU of 0.6514 on the local dataset and outperforms other compared baseline methods. Experimental findings demonstrate the validity and feasibility of the proposed approach and it provides a viable solution for pavement crack detection in practical application scenarios. Our code is available at https://github.com/xtu502/pavement-defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的金鱼完成签到 ,获得积分10
1秒前
橙汁完成签到,获得积分10
2秒前
普鲁卡因发布了新的文献求助10
5秒前
cora完成签到 ,获得积分10
11秒前
徐伟康完成签到 ,获得积分10
11秒前
Minicoper完成签到,获得积分10
22秒前
科研通AI5应助普鲁卡因采纳,获得10
22秒前
111完成签到 ,获得积分10
22秒前
奥特曼完成签到 ,获得积分10
22秒前
苏苏完成签到,获得积分10
23秒前
大橙子完成签到,获得积分10
23秒前
kelite完成签到 ,获得积分10
24秒前
火星上的雨柏完成签到 ,获得积分10
25秒前
JY完成签到,获得积分10
26秒前
知行合一完成签到 ,获得积分10
26秒前
29秒前
29秒前
笑林完成签到 ,获得积分10
30秒前
wwl完成签到,获得积分10
30秒前
娟娟完成签到 ,获得积分10
31秒前
Hollen完成签到 ,获得积分10
31秒前
janejane发布了新的文献求助10
32秒前
33秒前
32429606完成签到 ,获得积分10
33秒前
34秒前
普鲁卡因发布了新的文献求助10
36秒前
发个15分的完成签到 ,获得积分10
38秒前
38秒前
wellyou发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
43秒前
自由的鹏涛完成签到,获得积分20
46秒前
47秒前
在水一方应助Nayvue采纳,获得10
47秒前
50秒前
Ryan完成签到,获得积分10
51秒前
General完成签到 ,获得积分10
51秒前
谦让汝燕完成签到,获得积分10
53秒前
wellyou完成签到,获得积分10
54秒前
mint完成签到,获得积分10
56秒前
afli完成签到 ,获得积分0
59秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022