亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale Attention Networks for Pavement Defect Detection

计算机科学 卷积(计算机科学) 编码器 像素 卷积神经网络 特征(语言学) 人工智能 比例(比率) 模式识别(心理学) 水准点(测量) 特征提取 数据挖掘 人工神经网络 操作系统 量子力学 物理 哲学 地理 语言学 大地测量学
作者
Junde Chen,Yuxin Wen,Yaser A. Nanehkaran,Defu Zhang,Adnan Zeb
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:35
标识
DOI:10.1109/tim.2023.3298391
摘要

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. Instead of the original 3×3 convolution, the multi-scale convolution kernels are utilized in depth-wise separable convolution layers of the network. Further, the hybrid attention mechanism is separately incorporated into the encoder and decoder modules to infer the significance of spatial points and inter-channel relationship features for the input intermediate feature maps. The proposed approach achieves state-of-the-art performance on two publicly-available benchmark datasets, i.e., the Crack500 (500 crack images with 2,000×1,500 pixels) and CFD (118 crack images with 480×320 pixels) datasets. The mean intersection over union ( MIoU ) of the proposed approach on these two datasets reaches 0.7219 and 0.7788, respectively. Ablation experiments show that the multi-scale convolution and hybrid attention modules can effectively help the model extract high-level feature representations and generate more accurate pavement crack segmentation results. We further test the model on locally collected pavement crack images (131 images with 1024×768 pixels) and it achieves a satisfactory result. The proposed approach realizes the MIoU of 0.6514 on the local dataset and outperforms other compared baseline methods. Experimental findings demonstrate the validity and feasibility of the proposed approach and it provides a viable solution for pavement crack detection in practical application scenarios. Our code is available at https://github.com/xtu502/pavement-defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
科研通AI6应助luxiao采纳,获得10
6秒前
song发布了新的文献求助10
8秒前
专注的安青完成签到 ,获得积分10
9秒前
15秒前
MTF完成签到 ,获得积分10
18秒前
李健应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
23秒前
23秒前
30秒前
LYL完成签到,获得积分10
30秒前
halo完成签到 ,获得积分10
31秒前
LYL发布了新的文献求助10
36秒前
38秒前
44秒前
46秒前
xxi发布了新的文献求助10
48秒前
ywzwszl完成签到,获得积分0
48秒前
50秒前
50秒前
英俊的铭应助xxi采纳,获得10
53秒前
彭于晏应助xxi采纳,获得10
53秒前
hhhhh发布了新的文献求助10
55秒前
量子星尘发布了新的文献求助10
55秒前
57秒前
irenechen发布了新的文献求助10
1分钟前
1分钟前
今后应助irenechen采纳,获得10
1分钟前
米线儿完成签到,获得积分10
1分钟前
许三问完成签到 ,获得积分0
1分钟前
1分钟前
song完成签到 ,获得积分10
1分钟前
呆萌念云完成签到 ,获得积分10
1分钟前
然463完成签到 ,获得积分10
1分钟前
woobinhua完成签到 ,获得积分10
1分钟前
完美世界应助欢喜的世倌采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610716
求助须知:如何正确求助?哪些是违规求助? 4016529
关于积分的说明 12435439
捐赠科研通 3698187
什么是DOI,文献DOI怎么找? 2039308
邀请新用户注册赠送积分活动 1072161
科研通“疑难数据库(出版商)”最低求助积分说明 955832