Multiscale Attention Networks for Pavement Defect Detection

计算机科学 卷积(计算机科学) 编码器 像素 卷积神经网络 特征(语言学) 人工智能 比例(比率) 模式识别(心理学) 水准点(测量) 特征提取 数据挖掘 人工神经网络 操作系统 量子力学 物理 哲学 地理 语言学 大地测量学
作者
Junde Chen,Yuxin Wen,Yaser A. Nanehkaran,Defu Zhang,Adnan Zeb
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:35
标识
DOI:10.1109/tim.2023.3298391
摘要

Pavement defects such as cracks, net cracks, and pit slots can cause potential traffic safety problems. The timely detection and identification play a key role in reducing the harm of various pavement defects. Particularly, the recent development in deep learning-based CNNs has shown competitive performance in image detection and classification. To detect pavement defects automatically and improve effects, a multi-scale mobile attention-based network, which we termed MANet, is proposed to perform the detection of pavement defects. The architecture of the encoder-decoder is used in MANet, where the encoder adopts the MobileNet as the backbone network to extract pavement defect features. Instead of the original 3×3 convolution, the multi-scale convolution kernels are utilized in depth-wise separable convolution layers of the network. Further, the hybrid attention mechanism is separately incorporated into the encoder and decoder modules to infer the significance of spatial points and inter-channel relationship features for the input intermediate feature maps. The proposed approach achieves state-of-the-art performance on two publicly-available benchmark datasets, i.e., the Crack500 (500 crack images with 2,000×1,500 pixels) and CFD (118 crack images with 480×320 pixels) datasets. The mean intersection over union ( MIoU ) of the proposed approach on these two datasets reaches 0.7219 and 0.7788, respectively. Ablation experiments show that the multi-scale convolution and hybrid attention modules can effectively help the model extract high-level feature representations and generate more accurate pavement crack segmentation results. We further test the model on locally collected pavement crack images (131 images with 1024×768 pixels) and it achieves a satisfactory result. The proposed approach realizes the MIoU of 0.6514 on the local dataset and outperforms other compared baseline methods. Experimental findings demonstrate the validity and feasibility of the proposed approach and it provides a viable solution for pavement crack detection in practical application scenarios. Our code is available at https://github.com/xtu502/pavement-defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助核桃采纳,获得30
1秒前
深情安青应助核桃采纳,获得10
1秒前
Ava应助核桃采纳,获得10
1秒前
研友_VZG7GZ应助核桃采纳,获得10
1秒前
Ava应助核桃采纳,获得10
1秒前
搜集达人应助核桃采纳,获得10
1秒前
传奇3应助核桃采纳,获得10
1秒前
慕青应助核桃采纳,获得10
1秒前
慕青应助核桃采纳,获得10
1秒前
1秒前
2秒前
远志发布了新的文献求助10
3秒前
王图图发布了新的文献求助10
4秒前
5秒前
5秒前
槐序二三发布了新的文献求助10
5秒前
ZA发布了新的文献求助10
5秒前
6秒前
大意的小馒头完成签到,获得积分10
7秒前
牛6完成签到,获得积分10
8秒前
酷波er应助Wang采纳,获得10
10秒前
JamesPei应助自信尔竹采纳,获得10
11秒前
QDU发布了新的文献求助10
11秒前
Hilda007发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
科目三应助大意的小馒头采纳,获得10
13秒前
13秒前
TIGun完成签到,获得积分10
13秒前
Daniel发布了新的文献求助10
13秒前
14秒前
珀拉瑞丝应助开心的绮玉采纳,获得10
14秒前
英俊的铭应助笑点低紊采纳,获得10
14秒前
山水之乐发布了新的文献求助20
14秒前
15秒前
李健应助dudu采纳,获得10
15秒前
顾矜应助饭团不吃鱼采纳,获得10
16秒前
皆非完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541