Robust adaptive enhancement algorithm for multi-modal high grayscale image displaying on low-bit monitors based on HIS and priori knowledge

灰度 计算机科学 亮度 算法 人工智能 计算机视觉 稳健性(进化) 先验与后验 图像(数学) 生物化学 化学 物理 哲学 认识论 光学 基因
作者
Liangliang Li,Peng Wang,Jia Ren,Zhigang Lü,Ruohai Di,Xiaoyan Li,Hui Gao
出处
期刊:Displays [Elsevier BV]
卷期号:79: 102494-102494 被引量:2
标识
DOI:10.1016/j.displa.2023.102494
摘要

Gray-scale images are widely used in many fields, including satellite remote sensing, autonomous driving, medical CT, and X-ray detection, but gray-scale images have many shortcomings, such as high bit, low contrast, and high dynamic ranges. The visual analysis of these images is complicated and limited by people's psychology and physiology, and pseudo-color technology is an effective way to solve this problem. To address the weak adaptive capability, poor robustness, and insufficient generalization of existing pseudo-color enhancement methods, an adaptive enhancement algorithm for high grayscale images based on prior knowledge and HIS space, called APKHHIS, was proposed. Firstly, an adaptive gray-scale image correction mapping algorithm based on original prior knowledge was designed, and the quantization of images with different bit depths is realized. Secondly, to ensure the effectiveness of the enhanced data, an adaptive power compensation method was designed to compensate for the brightness of the gray-scale corrected images. Finally, an adaptive brightness and power correction algorithm was innovatively designed for the first time, which can adaptively adjust the color saturation and spatial brightness of the image more reasonably. To verify the effectiveness of the algorithm proposed in this paper, adaptive enhancement experiments were carried out on multi-modal data sets. The subjective and objective experimental results show that the APKHHIS algorithm can achieve the best performance on various data sets, and has strong robustness and universality, which provides an effective solution for the adaptive enhancement of multi-modal low-quality images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙味芬达发布了新的文献求助10
1秒前
科研通AI2S应助google采纳,获得10
2秒前
科目三应助白茶泡泡球采纳,获得10
2秒前
3秒前
斯文败类应助jvmao采纳,获得10
3秒前
流氓兔完成签到,获得积分10
3秒前
3秒前
无敌大流流完成签到,获得积分10
4秒前
5秒前
guchenniub完成签到,获得积分10
6秒前
Lavenda发布了新的文献求助10
6秒前
Lucas应助不想学习采纳,获得10
6秒前
8秒前
希望天下0贩的0应助Tapioca采纳,获得10
8秒前
8秒前
WangSiwei完成签到,获得积分10
9秒前
无敌鱼发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI2S应助吴祥佳采纳,获得10
11秒前
蓝色小桃子的少女梦完成签到,获得积分10
11秒前
11秒前
Ethanyoyo0917发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
17秒前
17秒前
18秒前
Alrigh-t发布了新的文献求助30
18秒前
19秒前
wangyup发布了新的文献求助10
19秒前
收拾收拾发布了新的文献求助10
20秒前
独徙发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665083
求助须知:如何正确求助?哪些是违规求助? 3224688
关于积分的说明 9759070
捐赠科研通 2934645
什么是DOI,文献DOI怎么找? 1607070
邀请新用户注册赠送积分活动 759003
科研通“疑难数据库(出版商)”最低求助积分说明 735086