已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HydraMap v.2: Prediction of Hydration Sites and Desolvation Energy with Refined Statistical Potentials

配体(生物化学) 分子动力学 化学 氢键 分子 结合能 蛋白质配体 计算化学 工作(物理) 化学物理 热力学 物理 原子物理学 生物化学 受体 有机化学
作者
Yan Li,Zhe Zhang,Renxiao Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4749-4761 被引量:6
标识
DOI:10.1021/acs.jcim.3c00408
摘要

The complex network of water molecules within the binding pocket of a target protein undergoes alterations upon ligand binding, presenting a significant challenge for conventional molecular modeling methods to accurately characterize and compute the associated energy changes. We have previously developed an empirical method, HydraMap (J. Chem. Inf. Model.2020, 60, 4359-4375), which employs statistical potentials to predict hydration sites and compute desolvation energy, achieving a reasonable balance between accuracy and speed. In this work, we present its improved version, namely, HydraMap v.2. We updated the statistical potentials for protein-water interactions through an analysis of 17 042 crystal protein structures. We also introduced a new feature to evaluate ligand-water interactions by incorporating statistical potentials derived from the solvated structures of 9878 small organic molecules produced by molecular dynamics simulations. By combining these potentials, HydraMap v.2 can predict and compare the hydration sites in a binding pocket before and after ligand binding, identifying key water molecules involved in the binding process, such as those forming bridging hydrogen bonds and unstable ones that can be replaced. We demonstrated the application of HydraMap v.2 in explaining the structure-activity relationship of a panel of MCL-1 inhibitors. The desolvation energies calculated by summing the energy change of each hydration site before and after ligand binding showed good correlation with known ligand binding affinities on six target proteins. In conclusion, HydraMap v.2 offers a cost-effective solution for estimating the desolvation energy during protein-ligand binding and also is practical in guiding lead optimization in structure-based drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
闹心完成签到 ,获得积分10
2秒前
2秒前
YBR完成签到 ,获得积分10
4秒前
Sven_M完成签到,获得积分10
4秒前
董思雨发布了新的文献求助10
6秒前
张雯思发布了新的文献求助10
7秒前
我是125完成签到,获得积分10
9秒前
大模型应助Carolchen采纳,获得10
10秒前
yihanghh完成签到 ,获得积分10
13秒前
司忆完成签到 ,获得积分10
13秒前
Bowman完成签到,获得积分10
14秒前
15秒前
李爱国应助sally采纳,获得10
15秒前
Tsin778完成签到 ,获得积分10
17秒前
leolee发布了新的文献求助10
19秒前
缓慢逍遥完成签到 ,获得积分10
20秒前
23秒前
优雅愚志完成签到,获得积分10
25秒前
ccc完成签到 ,获得积分10
26秒前
李健的小迷弟应助张雯思采纳,获得10
26秒前
ding应助张雯思采纳,获得10
26秒前
李健的小迷弟应助张雯思采纳,获得10
26秒前
26秒前
SciGPT应助张雯思采纳,获得10
26秒前
陈虹林关注了科研通微信公众号
26秒前
上官若男应助张雯思采纳,获得10
26秒前
Owen应助张雯思采纳,获得10
26秒前
隐形曼青应助张雯思采纳,获得10
26秒前
李健的小迷弟应助张雯思采纳,获得30
26秒前
sally发布了新的文献求助10
27秒前
江月年完成签到 ,获得积分10
31秒前
Aloha完成签到,获得积分10
32秒前
Cat应助张雯思采纳,获得10
34秒前
耍酷诗槐应助张雯思采纳,获得10
34秒前
sally完成签到,获得积分10
34秒前
坚强觅珍完成签到 ,获得积分10
34秒前
36秒前
lyy完成签到 ,获得积分10
36秒前
勤奋尔冬完成签到 ,获得积分10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749