HydraMap v.2: Prediction of Hydration Sites and Desolvation Energy with Refined Statistical Potentials

配体(生物化学) 分子动力学 化学 氢键 分子 结合能 蛋白质配体 计算化学 工作(物理) 化学物理 热力学 物理 原子物理学 生物化学 受体 有机化学
作者
Yan Li,Zhe Zhang,Renxiao Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4749-4761 被引量:7
标识
DOI:10.1021/acs.jcim.3c00408
摘要

The complex network of water molecules within the binding pocket of a target protein undergoes alterations upon ligand binding, presenting a significant challenge for conventional molecular modeling methods to accurately characterize and compute the associated energy changes. We have previously developed an empirical method, HydraMap (J. Chem. Inf. Model. 2020, 60, 4359-4375), which employs statistical potentials to predict hydration sites and compute desolvation energy, achieving a reasonable balance between accuracy and speed. In this work, we present its improved version, namely, HydraMap v.2. We updated the statistical potentials for protein-water interactions through an analysis of 17 042 crystal protein structures. We also introduced a new feature to evaluate ligand-water interactions by incorporating statistical potentials derived from the solvated structures of 9878 small organic molecules produced by molecular dynamics simulations. By combining these potentials, HydraMap v.2 can predict and compare the hydration sites in a binding pocket before and after ligand binding, identifying key water molecules involved in the binding process, such as those forming bridging hydrogen bonds and unstable ones that can be replaced. We demonstrated the application of HydraMap v.2 in explaining the structure-activity relationship of a panel of MCL-1 inhibitors. The desolvation energies calculated by summing the energy change of each hydration site before and after ligand binding showed good correlation with known ligand binding affinities on six target proteins. In conclusion, HydraMap v.2 offers a cost-effective solution for estimating the desolvation energy during protein-ligand binding and also is practical in guiding lead optimization in structure-based drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清风完成签到,获得积分10
刚刚
1秒前
2秒前
赫赫完成签到 ,获得积分10
2秒前
霸气的煜祺完成签到,获得积分10
3秒前
跳跃的晓兰完成签到,获得积分20
3秒前
刘长绪发布了新的文献求助10
3秒前
lzlz199829发布了新的文献求助10
3秒前
dakjdia发布了新的文献求助10
3秒前
dsgvdf发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
排骨饭发布了新的文献求助10
5秒前
思源应助slowpoke采纳,获得10
5秒前
懵懂的妙竹完成签到,获得积分10
6秒前
李健的粉丝团团长应助ZLPY采纳,获得10
6秒前
bkagyin应助albertxin采纳,获得10
6秒前
Zysplus发布了新的文献求助10
7秒前
爆米花应助靖哥哥采纳,获得10
7秒前
8秒前
lunhui6453完成签到 ,获得积分10
8秒前
思源应助dsgvdf采纳,获得10
8秒前
邓肖帅完成签到,获得积分10
8秒前
zike发布了新的文献求助10
8秒前
spc68应助001采纳,获得10
9秒前
尤涅若发布了新的文献求助10
10秒前
lzlz199829完成签到,获得积分10
10秒前
紫熊发布了新的文献求助10
10秒前
10秒前
呆萌发布了新的文献求助10
10秒前
空无完成签到,获得积分10
11秒前
小蚂蚁发布了新的文献求助80
11秒前
11秒前
12秒前
活泼的鸣凤完成签到,获得积分20
14秒前
万能图书馆应助邓肖帅采纳,获得10
14秒前
林知鲸落发布了新的文献求助10
14秒前
handada发布了新的文献求助10
15秒前
LChen完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075