Ambiguity-selective consistency regularization for mean-teacher semi-supervised medical image segmentation

模棱两可 分割 人工智能 计算机科学 一致性(知识库) 机器学习 正规化(语言学) 水准点(测量) 模式识别(心理学) 地理 大地测量学 程序设计语言
作者
Zhe Xu,Yixin Wang,Donghuan Lu,Xiangde Luo,Jiangpeng Yan,Yefeng Zheng,K.Y. Tong
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102880-102880 被引量:42
标识
DOI:10.1016/j.media.2023.102880
摘要

Semi-supervised learning has greatly advanced medical image segmentation since it effectively alleviates the need of acquiring abundant annotations from experts, wherein the mean-teacher model, known as a milestone of perturbed consistency learning, commonly serves as a standard and simple baseline. Inherently, learning from consistency can be regarded as learning from stability under perturbations. Recent improvement leans toward more complex consistency learning frameworks, yet, little attention is paid to the consistency target selection. Considering that the ambiguous regions from unlabeled data contain more informative complementary clues, in this paper, we improve the mean-teacher model to a novel ambiguity-consensus mean-teacher (AC-MT) model. Particularly, we comprehensively introduce and benchmark a family of plug-and-play strategies for ambiguous target selection from the perspectives of entropy, model uncertainty and label noise self-identification, respectively. Then, the estimated ambiguity map is incorporated into the consistency loss to encourage consensus between the two models' predictions in these informative regions. In essence, our AC-MT aims to find out the most worthwhile voxel-wise targets from the unlabeled data, and the model especially learns from the perturbed stability of these informative regions. The proposed methods are extensively evaluated on left atrium segmentation and brain tumor segmentation. Encouragingly, our strategies bring substantial improvement over recent state-of-the-art methods. The ablation study further demonstrates our hypothesis and shows impressive results under various extreme annotation conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yasing发布了新的文献求助10
刚刚
66完成签到,获得积分10
1秒前
1秒前
安走天发布了新的文献求助10
2秒前
在水一方应助郎治宇采纳,获得10
3秒前
beleve发布了新的文献求助10
3秒前
4秒前
JIE发布了新的文献求助10
4秒前
4秒前
leslie发布了新的文献求助10
5秒前
lhl发布了新的文献求助10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
hebilie发布了新的文献求助10
5秒前
5秒前
pluto应助科研通管家采纳,获得10
5秒前
quhayley应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
yummy应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助研友_nV2pkn采纳,获得10
6秒前
烟花应助科研通管家采纳,获得50
6秒前
暮霭沉沉应助科研通管家采纳,获得10
7秒前
yummy应助科研通管家采纳,获得10
7秒前
bleem完成签到,获得积分10
7秒前
7秒前
小奋斗发布了新的文献求助10
8秒前
小二郎应助淡定小蜜蜂采纳,获得10
9秒前
铃兰完成签到,获得积分10
9秒前
Lysine发布了新的文献求助30
10秒前
安走天完成签到,获得积分10
10秒前
潘果果完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038