Automatic Pavement Crack Identification Based on an Improved C-Mask Region-Based Convolutional Neural Network Model

卷积神经网络 分割 计算机科学 人工智能 像素 鉴定(生物学) 人工神经网络 任务(项目管理) 探测器 模式识别(心理学) 计算机视觉 工程类 植物 电信 生物 系统工程
作者
Liyang Xiao,Wei Li,Nanyi Deng,Bo Yuan,Yubing Bi,Yiqun Cui,Xin Cui
出处
期刊:Transportation Research Record [SAGE]
卷期号:: 036119812211227-036119812211227
标识
DOI:10.1177/03611981221122778
摘要

A pavement crack identification method based on an improved C-mask region-based convolutional neural network (R-CNN) model is proposed to solve problems whereby existing crack recognition algorithms exhibit low accuracy and cannot perform detection and segmentation tasks simultaneously. The crack dataset that was collected in this study included three categories: transverse cracks, longitudinal cracks, and alligator cracks. The model integrates the detection task and the segmentation task into one model, and segments the crack pixels in the generated detection box while achieving target positioning. Firstly, based on the mask R-CNN model, the improved C-mask R-CNN method is designed, which improves the quality of the region proposal box by combining the detectors that are cascaded with different intersections over union thresholds, and achieves accurate crack location under high-threshold detection. Secondly, the ratio of the anchor in the model is adjusted, and a series of optimization parameters and experimental comparisons are carried out for the improved model to realize the segmentation of the crack pixels in the generated detection box during the crack location. The effectiveness of the proposed model is verified, and finally, an evaluation method for cracks is proposed. Furthermore, the calculation of the crack geometric parameters is completed. The experimental results demonstrate that the mean average precision (mAP) of the C-mask R-CNN model detection part reached 95.4%, and the mAP of the segmentation part reached 93.5%. Moreover, the proposed model is convenient for researchers to deploy and implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
asADA发布了新的文献求助10
2秒前
科研通AI2S应助糖糖采纳,获得10
2秒前
2秒前
赖雅绿完成签到,获得积分0
3秒前
long发布了新的文献求助10
3秒前
闲窳发布了新的文献求助20
4秒前
所所应助健忘天与采纳,获得10
4秒前
4秒前
5秒前
5秒前
wsqg123发布了新的文献求助10
6秒前
6秒前
6秒前
土豪的康发布了新的文献求助10
6秒前
二依发布了新的文献求助10
7秒前
sdfwsdfsd发布了新的文献求助50
7秒前
7秒前
8秒前
Azure发布了新的文献求助10
9秒前
勤奋橘子发布了新的文献求助10
9秒前
ikea1984发布了新的文献求助10
10秒前
ww完成签到,获得积分10
10秒前
spring完成签到,获得积分10
12秒前
wushangyu发布了新的文献求助10
12秒前
英俊的铭应助矮小的笑旋采纳,获得10
12秒前
光亮邴发布了新的文献求助10
13秒前
隐形曼青应助song采纳,获得10
13秒前
yaoyu发布了新的文献求助10
14秒前
14秒前
科研通AI6应助GU采纳,获得10
14秒前
14秒前
14秒前
vv发布了新的文献求助200
14秒前
深情安青应助ww采纳,获得10
15秒前
shlw完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
orixero应助孙大大采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610029
求助须知:如何正确求助?哪些是违规求助? 4694550
关于积分的说明 14882989
捐赠科研通 4720934
什么是DOI,文献DOI怎么找? 2544990
邀请新用户注册赠送积分活动 1509848
关于科研通互助平台的介绍 1473013