亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Pavement Crack Identification Based on an Improved C-Mask Region-Based Convolutional Neural Network Model

卷积神经网络 分割 计算机科学 人工智能 像素 鉴定(生物学) 人工神经网络 任务(项目管理) 探测器 模式识别(心理学) 计算机视觉 工程类 植物 电信 生物 系统工程
作者
Liyang Xiao,Wei Li,Nanyi Deng,Bo Yuan,Yubing Bi,Yiqun Cui,Xin Cui
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:: 036119812211227-036119812211227
标识
DOI:10.1177/03611981221122778
摘要

A pavement crack identification method based on an improved C-mask region-based convolutional neural network (R-CNN) model is proposed to solve problems whereby existing crack recognition algorithms exhibit low accuracy and cannot perform detection and segmentation tasks simultaneously. The crack dataset that was collected in this study included three categories: transverse cracks, longitudinal cracks, and alligator cracks. The model integrates the detection task and the segmentation task into one model, and segments the crack pixels in the generated detection box while achieving target positioning. Firstly, based on the mask R-CNN model, the improved C-mask R-CNN method is designed, which improves the quality of the region proposal box by combining the detectors that are cascaded with different intersections over union thresholds, and achieves accurate crack location under high-threshold detection. Secondly, the ratio of the anchor in the model is adjusted, and a series of optimization parameters and experimental comparisons are carried out for the improved model to realize the segmentation of the crack pixels in the generated detection box during the crack location. The effectiveness of the proposed model is verified, and finally, an evaluation method for cracks is proposed. Furthermore, the calculation of the crack geometric parameters is completed. The experimental results demonstrate that the mean average precision (mAP) of the C-mask R-CNN model detection part reached 95.4%, and the mAP of the segmentation part reached 93.5%. Moreover, the proposed model is convenient for researchers to deploy and implement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
C17发布了新的文献求助10
3秒前
酷波er应助老实天菱采纳,获得10
5秒前
小二郎应助展锋采纳,获得10
6秒前
十三发布了新的文献求助10
8秒前
热心的豌豆完成签到 ,获得积分10
16秒前
科研通AI5应助C17采纳,获得10
19秒前
动听衬衫应助科研通管家采纳,获得10
20秒前
动听衬衫应助科研通管家采纳,获得30
20秒前
科研通AI5应助机智冰姬采纳,获得10
29秒前
十三完成签到,获得积分20
33秒前
40秒前
漫漫发布了新的文献求助10
48秒前
49秒前
小张完成签到 ,获得积分10
50秒前
51秒前
52秒前
55秒前
现代CC完成签到 ,获得积分10
57秒前
科研通AI5应助漫漫采纳,获得10
58秒前
展锋发布了新的文献求助10
59秒前
陶醉元冬完成签到,获得积分10
1分钟前
bkagyin应助爱听歌凤灵采纳,获得10
1分钟前
英姑应助123采纳,获得10
1分钟前
斯文败类应助奥黛丽悟空采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
桐桐应助111采纳,获得10
1分钟前
1分钟前
爱听歌凤灵完成签到,获得积分10
1分钟前
今日发布了新的文献求助10
1分钟前
Lucas应助七色光采纳,获得10
1分钟前
充电宝应助彭蓬采纳,获得10
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
科研通AI5应助花骨头采纳,获得10
2分钟前
今日完成签到,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918