Automatic Pavement Crack Identification Based on an Improved C-Mask Region-Based Convolutional Neural Network Model

卷积神经网络 分割 计算机科学 人工智能 像素 鉴定(生物学) 人工神经网络 任务(项目管理) 探测器 模式识别(心理学) 计算机视觉 工程类 植物 电信 生物 系统工程
作者
Liyang Xiao,Wei Li,Nanyi Deng,Bo Yuan,Yubing Bi,Yiqun Cui,Xin Cui
出处
期刊:Transportation Research Record [SAGE]
卷期号:: 036119812211227-036119812211227
标识
DOI:10.1177/03611981221122778
摘要

A pavement crack identification method based on an improved C-mask region-based convolutional neural network (R-CNN) model is proposed to solve problems whereby existing crack recognition algorithms exhibit low accuracy and cannot perform detection and segmentation tasks simultaneously. The crack dataset that was collected in this study included three categories: transverse cracks, longitudinal cracks, and alligator cracks. The model integrates the detection task and the segmentation task into one model, and segments the crack pixels in the generated detection box while achieving target positioning. Firstly, based on the mask R-CNN model, the improved C-mask R-CNN method is designed, which improves the quality of the region proposal box by combining the detectors that are cascaded with different intersections over union thresholds, and achieves accurate crack location under high-threshold detection. Secondly, the ratio of the anchor in the model is adjusted, and a series of optimization parameters and experimental comparisons are carried out for the improved model to realize the segmentation of the crack pixels in the generated detection box during the crack location. The effectiveness of the proposed model is verified, and finally, an evaluation method for cracks is proposed. Furthermore, the calculation of the crack geometric parameters is completed. The experimental results demonstrate that the mean average precision (mAP) of the C-mask R-CNN model detection part reached 95.4%, and the mAP of the segmentation part reached 93.5%. Moreover, the proposed model is convenient for researchers to deploy and implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平平完成签到,获得积分10
刚刚
jie完成签到 ,获得积分10
1秒前
1秒前
2秒前
ceds完成签到,获得积分10
2秒前
2秒前
苹果味橙C完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
bkagyin应助HanyuJing采纳,获得10
4秒前
蘑菇应助三块石头采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Kotori完成签到,获得积分10
5秒前
5秒前
慕青应助一只小羊采纳,获得10
6秒前
小六发布了新的文献求助10
6秒前
王玥发布了新的文献求助10
7秒前
Twonej应助iiiau采纳,获得30
7秒前
林淳完成签到,获得积分10
7秒前
毛毛虫发布了新的文献求助10
7秒前
8秒前
蓝天应助涨知识ing采纳,获得10
8秒前
8秒前
老年发布了新的文献求助10
8秒前
ding应助果汁采纳,获得10
8秒前
海的呼唤发布了新的文献求助10
8秒前
jhw发布了新的文献求助10
9秒前
圆锥香蕉应助失眠夏山采纳,获得20
9秒前
10秒前
Xhhaai应助花生油炒花生米采纳,获得10
11秒前
11秒前
李海翔完成签到,获得积分10
12秒前
自觉思萱发布了新的文献求助10
12秒前
12秒前
顾矜应助实验菜菜君采纳,获得20
13秒前
R沫完成签到,获得积分10
13秒前
gu发布了新的文献求助10
13秒前
蓝天应助FEN采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106