Automatic Pavement Crack Identification Based on an Improved C-Mask Region-Based Convolutional Neural Network Model

卷积神经网络 分割 计算机科学 人工智能 像素 鉴定(生物学) 人工神经网络 任务(项目管理) 探测器 模式识别(心理学) 计算机视觉 工程类 植物 电信 生物 系统工程
作者
Liyang Xiao,Wei Li,Nanyi Deng,Bo Yuan,Yubing Bi,Yiqun Cui,Xin Cui
出处
期刊:Transportation Research Record [SAGE]
卷期号:: 036119812211227-036119812211227
标识
DOI:10.1177/03611981221122778
摘要

A pavement crack identification method based on an improved C-mask region-based convolutional neural network (R-CNN) model is proposed to solve problems whereby existing crack recognition algorithms exhibit low accuracy and cannot perform detection and segmentation tasks simultaneously. The crack dataset that was collected in this study included three categories: transverse cracks, longitudinal cracks, and alligator cracks. The model integrates the detection task and the segmentation task into one model, and segments the crack pixels in the generated detection box while achieving target positioning. Firstly, based on the mask R-CNN model, the improved C-mask R-CNN method is designed, which improves the quality of the region proposal box by combining the detectors that are cascaded with different intersections over union thresholds, and achieves accurate crack location under high-threshold detection. Secondly, the ratio of the anchor in the model is adjusted, and a series of optimization parameters and experimental comparisons are carried out for the improved model to realize the segmentation of the crack pixels in the generated detection box during the crack location. The effectiveness of the proposed model is verified, and finally, an evaluation method for cracks is proposed. Furthermore, the calculation of the crack geometric parameters is completed. The experimental results demonstrate that the mean average precision (mAP) of the C-mask R-CNN model detection part reached 95.4%, and the mAP of the segmentation part reached 93.5%. Moreover, the proposed model is convenient for researchers to deploy and implement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lm完成签到,获得积分20
刚刚
FFF发布了新的文献求助10
1秒前
小二郎应助哈哈采纳,获得10
1秒前
乐乐应助juan采纳,获得10
2秒前
txyouniverse完成签到 ,获得积分10
2秒前
CodeCraft应助纷花雨采纳,获得10
2秒前
小十二完成签到,获得积分10
2秒前
Tianxu Li发布了新的文献求助10
3秒前
月白完成签到,获得积分10
3秒前
淡淡de橙子完成签到,获得积分10
4秒前
含蓄哈密瓜完成签到,获得积分20
4秒前
5秒前
小蘑菇应助白华苍松采纳,获得10
5秒前
董咚咚完成签到,获得积分10
7秒前
洋芋片完成签到 ,获得积分10
7秒前
二尖瓣后叶完成签到,获得积分10
8秒前
zc完成签到,获得积分10
8秒前
酷波er应助dildil采纳,获得10
8秒前
科研通AI5应助科研小民工采纳,获得10
9秒前
觅桃乌龙发布了新的文献求助10
9秒前
张有志完成签到,获得积分10
9秒前
JoyceeZHONG完成签到,获得积分10
9秒前
Shine完成签到 ,获得积分10
9秒前
10秒前
King16发布了新的文献求助10
11秒前
哲000完成签到,获得积分10
11秒前
Tutusamo发布了新的文献求助10
11秒前
Ning完成签到,获得积分10
12秒前
科研通AI5应助欢欢采纳,获得10
12秒前
xiaozou55完成签到 ,获得积分10
12秒前
13秒前
浩浩浩完成签到,获得积分10
14秒前
14秒前
15秒前
科研通AI5应助MrCoolWu采纳,获得10
15秒前
ZXD1989完成签到 ,获得积分10
15秒前
大王叫我来巡山完成签到,获得积分20
15秒前
弩弩hannah完成签到,获得积分10
15秒前
庸尘完成签到,获得积分10
16秒前
AXEDW完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759