Automatic Pavement Crack Identification Based on an Improved C-Mask Region-Based Convolutional Neural Network Model

卷积神经网络 分割 计算机科学 人工智能 像素 鉴定(生物学) 人工神经网络 任务(项目管理) 探测器 模式识别(心理学) 计算机视觉 工程类 植物 电信 生物 系统工程
作者
Liyang Xiao,Wei Li,Nanyi Deng,Bo Yuan,Yubing Bi,Yiqun Cui,Xin Cui
出处
期刊:Transportation Research Record [SAGE]
卷期号:: 036119812211227-036119812211227
标识
DOI:10.1177/03611981221122778
摘要

A pavement crack identification method based on an improved C-mask region-based convolutional neural network (R-CNN) model is proposed to solve problems whereby existing crack recognition algorithms exhibit low accuracy and cannot perform detection and segmentation tasks simultaneously. The crack dataset that was collected in this study included three categories: transverse cracks, longitudinal cracks, and alligator cracks. The model integrates the detection task and the segmentation task into one model, and segments the crack pixels in the generated detection box while achieving target positioning. Firstly, based on the mask R-CNN model, the improved C-mask R-CNN method is designed, which improves the quality of the region proposal box by combining the detectors that are cascaded with different intersections over union thresholds, and achieves accurate crack location under high-threshold detection. Secondly, the ratio of the anchor in the model is adjusted, and a series of optimization parameters and experimental comparisons are carried out for the improved model to realize the segmentation of the crack pixels in the generated detection box during the crack location. The effectiveness of the proposed model is verified, and finally, an evaluation method for cracks is proposed. Furthermore, the calculation of the crack geometric parameters is completed. The experimental results demonstrate that the mean average precision (mAP) of the C-mask R-CNN model detection part reached 95.4%, and the mAP of the segmentation part reached 93.5%. Moreover, the proposed model is convenient for researchers to deploy and implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助ZZZ采纳,获得20
刚刚
刚刚
1秒前
毛毛完成签到,获得积分10
1秒前
1秒前
1秒前
MMMV完成签到,获得积分10
1秒前
霜降应助琳666采纳,获得10
1秒前
Aurora发布了新的文献求助10
2秒前
欧阳完成签到,获得积分10
2秒前
小陈发布了新的文献求助10
2秒前
2秒前
可爱的函函应助笨笨乘风采纳,获得10
3秒前
ROOT发布了新的文献求助10
3秒前
3秒前
情怀应助小寒同学采纳,获得10
4秒前
4秒前
威武青亦发布了新的文献求助10
4秒前
4秒前
机智的仇天完成签到,获得积分10
5秒前
6秒前
wuyu完成签到,获得积分20
6秒前
牛马学生发布了新的文献求助10
6秒前
7秒前
草拟大坝发布了新的文献求助10
7秒前
H8发布了新的文献求助10
7秒前
8秒前
YORS完成签到,获得积分10
8秒前
科研通AI6应助chhe采纳,获得10
9秒前
蓝天发布了新的文献求助10
9秒前
10秒前
淡定茉莉发布了新的文献求助10
10秒前
香蕉觅云应助黄晓丽采纳,获得10
10秒前
10秒前
烟花应助lx123采纳,获得10
11秒前
11秒前
11秒前
11秒前
雅雅完成签到 ,获得积分10
13秒前
j7完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548