Automatic Pavement Crack Identification Based on an Improved C-Mask Region-Based Convolutional Neural Network Model

卷积神经网络 分割 计算机科学 人工智能 像素 鉴定(生物学) 人工神经网络 任务(项目管理) 探测器 模式识别(心理学) 计算机视觉 工程类 植物 电信 生物 系统工程
作者
Liyang Xiao,Wei Li,Nanyi Deng,Bo Yuan,Yubing Bi,Yiqun Cui,Xin Cui
出处
期刊:Transportation Research Record [SAGE]
卷期号:: 036119812211227-036119812211227
标识
DOI:10.1177/03611981221122778
摘要

A pavement crack identification method based on an improved C-mask region-based convolutional neural network (R-CNN) model is proposed to solve problems whereby existing crack recognition algorithms exhibit low accuracy and cannot perform detection and segmentation tasks simultaneously. The crack dataset that was collected in this study included three categories: transverse cracks, longitudinal cracks, and alligator cracks. The model integrates the detection task and the segmentation task into one model, and segments the crack pixels in the generated detection box while achieving target positioning. Firstly, based on the mask R-CNN model, the improved C-mask R-CNN method is designed, which improves the quality of the region proposal box by combining the detectors that are cascaded with different intersections over union thresholds, and achieves accurate crack location under high-threshold detection. Secondly, the ratio of the anchor in the model is adjusted, and a series of optimization parameters and experimental comparisons are carried out for the improved model to realize the segmentation of the crack pixels in the generated detection box during the crack location. The effectiveness of the proposed model is verified, and finally, an evaluation method for cracks is proposed. Furthermore, the calculation of the crack geometric parameters is completed. The experimental results demonstrate that the mean average precision (mAP) of the C-mask R-CNN model detection part reached 95.4%, and the mAP of the segmentation part reached 93.5%. Moreover, the proposed model is convenient for researchers to deploy and implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然丹蝶发布了新的文献求助10
刚刚
刚刚
ken5488完成签到,获得积分10
2秒前
sherrywuxh发布了新的文献求助10
2秒前
Oooner发布了新的文献求助10
3秒前
4秒前
Akim应助学术脑袋采纳,获得10
5秒前
慕青应助lyh采纳,获得10
5秒前
5秒前
生动电脑发布了新的文献求助30
5秒前
嘎哈完成签到 ,获得积分10
7秒前
李健的小迷弟应助better采纳,获得10
10秒前
mostspecial完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
隐形曼青应助sherrywuxh采纳,获得10
13秒前
13秒前
15秒前
伶俐盼海发布了新的文献求助10
15秒前
红豆大王完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
Patrick0614发布了新的文献求助10
17秒前
18秒前
18秒前
学术脑袋发布了新的文献求助10
18秒前
顾矜应助优美紫槐采纳,获得10
19秒前
19秒前
Akim应助嘎哈采纳,获得10
20秒前
21秒前
23秒前
LIhao发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
丰富以亦完成签到,获得积分10
25秒前
25秒前
yolo完成签到,获得积分10
25秒前
better发布了新的文献求助10
26秒前
26秒前
27秒前
伯赏盼晴发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513