计算机科学
推论
对象(语法)
灵活性(工程)
过程(计算)
编码(集合论)
基本事实
算法
集合(抽象数据类型)
目标检测
财产(哲学)
人工智能
模式识别(心理学)
数学
程序设计语言
哲学
操作系统
认识论
统计
作者
Shoufa Chen,Peize Sun,Yibing Song,Ping Luo
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:25
标识
DOI:10.48550/arxiv.2211.09788
摘要
We propose DiffusionDet, a new framework that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. During the training stage, object boxes diffuse from ground-truth boxes to random distribution, and the model learns to reverse this noising process. In inference, the model refines a set of randomly generated boxes to the output results in a progressive way. Our work possesses an appealing property of flexibility, which enables the dynamic number of boxes and iterative evaluation. The extensive experiments on the standard benchmarks show that DiffusionDet achieves favorable performance compared to previous well-established detectors. For example, DiffusionDet achieves 5.3 AP and 4.8 AP gains when evaluated with more boxes and iteration steps, under a zero-shot transfer setting from COCO to CrowdHuman. Our code is available at https://github.com/ShoufaChen/DiffusionDet.
科研通智能强力驱动
Strongly Powered by AbleSci AI