可解释性
计算机科学
块(置换群论)
编码器
人工智能
代表(政治)
机器学习
计算生物学
数学
生物
几何学
政治学
政治
操作系统
法学
作者
Li Zhang,Chun-Chun Wang,Xing Chen
摘要
Exiting computational models for drug-target binding affinity prediction have much room for improvement in prediction accuracy, robustness and generalization ability. Most deep learning models lack interpretability analysis and few studies provide application examples. Based on these observations, we presented a novel model named Molecule Representation Block-based Drug-Target binding Affinity prediction (MRBDTA). MRBDTA is composed of embedding and positional encoding, molecule representation block and interaction learning module. The advantages of MRBDTA are reflected in three aspects: (i) developing Trans block to extract molecule features through improving the encoder of transformer, (ii) introducing skip connection at encoder level in Trans block and (iii) enhancing the ability to capture interaction sites between proteins and drugs. The test results on two benchmark datasets manifest that MRBDTA achieves the best performance compared with 11 state-of-the-art models. Besides, through replacing Trans block with single Trans encoder and removing skip connection in Trans block, we verified that Trans block and skip connection could effectively improve the prediction accuracy and reliability of MRBDTA. Then, relying on multi-head attention mechanism, we performed interpretability analysis to illustrate that MRBDTA can correctly capture part of interaction sites between proteins and drugs. In case studies, we firstly employed MRBDTA to predict binding affinities between Food and Drug Administration-approved drugs and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication-related proteins. Secondly, we compared true binding affinities between 3C-like proteinase and 185 drugs with those predicted by MRBDTA. The final results of case studies reveal reliable performance of MRBDTA in drug design for SARS-CoV-2.
科研通智能强力驱动
Strongly Powered by AbleSci AI