A time-aware attention model for prediction of acute kidney injury after pediatric cardiac surgery

接收机工作特性 医学 急性肾损伤 临床实习 队列 曲线下面积 时间序列 召回 人工智能 重症监护医学 急诊医学 机器学习 数据挖掘 计算机科学 内科学 物理疗法 哲学 语言学
作者
Xian Zeng,Shanshan Shi,Yi Sun,Yuqing Feng,Linhua Tan,Ru Lin,Jianhua Li,Huilong Duan,Qiang Shu,Haomin Li
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (1): 94-102 被引量:5
标识
DOI:10.1093/jamia/ocac202
摘要

Acute kidney injury (AKI) is a common complication after pediatric cardiac surgery, and the early detection of AKI may allow for timely preventive or therapeutic measures. However, current AKI prediction researches pay less attention to time information among time-series clinical data and model building strategies that meet complex clinical application scenario. This study aims to develop and validate a model for predicting postoperative AKI that operates sequentially over individual time-series clinical data.A retrospective cohort of 3386 pediatric patients extracted from PIC database was used for training, calibrating, and testing purposes. A time-aware deep learning model was developed and evaluated from 3 clinical perspectives that use different data collection windows and prediction windows to answer different AKI prediction questions encountered in clinical practice. We compared our model with existing state-of-the-art models from 3 clinical perspectives using the area under the receiver operating characteristic curve (ROC AUC) and the area under the precision-recall curve (PR AUC).Our proposed model significantly outperformed the existing state-of-the-art models with an improved average performance for any AKI prediction from the 3 evaluation perspectives. This model predicted 91% of all AKI episodes using data collected at 24 h after surgery, resulting in a ROC AUC of 0.908 and a PR AUC of 0.898. On average, our model predicted 83% of all AKI episodes that occurred within the different time windows in the 3 evaluation perspectives. The calibration performance of the proposed model was substantially higher than the existing state-of-the-art models.This study showed that a deep learning model can accurately predict postoperative AKI using perioperative time-series data. It has the potential to be integrated into real-time clinical decision support systems to support postoperative care planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的谷蕊关注了科研通微信公众号
1秒前
2秒前
鹿多多发布了新的文献求助10
7秒前
1111发布了新的文献求助10
7秒前
领导范儿应助yatudouya采纳,获得30
7秒前
8秒前
HeTaoLuu发布了新的文献求助10
9秒前
甜甜凌青完成签到,获得积分10
9秒前
10秒前
12秒前
14秒前
14秒前
嘻嘻的圆发布了新的文献求助10
15秒前
kuzb发布了新的文献求助10
15秒前
对手发布了新的文献求助10
16秒前
结实老师完成签到,获得积分10
16秒前
16秒前
科目三应助Ivy采纳,获得10
17秒前
20秒前
石头完成签到,获得积分10
20秒前
哇哒西蛙发布了新的文献求助10
24秒前
wayne555555完成签到,获得积分20
27秒前
所所应助星之茧采纳,获得10
29秒前
29秒前
晶晶在努力完成签到 ,获得积分10
32秒前
34秒前
35秒前
JamesPei应助哇哒西蛙采纳,获得10
35秒前
38秒前
羲月发布了新的文献求助10
40秒前
红莲墨生发布了新的文献求助10
41秒前
CHENDQ完成签到,获得积分10
43秒前
黑香菱发布了新的文献求助10
45秒前
1t发布了新的文献求助30
45秒前
仚屳完成签到,获得积分10
51秒前
sad完成签到,获得积分20
51秒前
传奇3应助乐一采纳,获得10
52秒前
NN完成签到,获得积分10
52秒前
大聪明发布了新的文献求助10
53秒前
阿大撒2发布了新的文献求助10
53秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059100
求助须知:如何正确求助?哪些是违规求助? 2715072
关于积分的说明 7443633
捐赠科研通 2360574
什么是DOI,文献DOI怎么找? 1250828
科研通“疑难数据库(出版商)”最低求助积分说明 607550
版权声明 596432