A time-aware attention model for prediction of acute kidney injury after pediatric cardiac surgery

接收机工作特性 医学 急性肾损伤 临床实习 队列 曲线下面积 人工智能 重症监护医学 急诊医学 机器学习 计算机科学 内科学 物理疗法
作者
Xian Zeng,Shanshan Shi,Sun Yuhan,Yuqing Feng,Linhua Tan,Ru Lin,Jianhua Li,Huilong Duan,Qiang Shu,Haomin Li
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (1): 94-102 被引量:8
标识
DOI:10.1093/jamia/ocac202
摘要

Acute kidney injury (AKI) is a common complication after pediatric cardiac surgery, and the early detection of AKI may allow for timely preventive or therapeutic measures. However, current AKI prediction researches pay less attention to time information among time-series clinical data and model building strategies that meet complex clinical application scenario. This study aims to develop and validate a model for predicting postoperative AKI that operates sequentially over individual time-series clinical data.A retrospective cohort of 3386 pediatric patients extracted from PIC database was used for training, calibrating, and testing purposes. A time-aware deep learning model was developed and evaluated from 3 clinical perspectives that use different data collection windows and prediction windows to answer different AKI prediction questions encountered in clinical practice. We compared our model with existing state-of-the-art models from 3 clinical perspectives using the area under the receiver operating characteristic curve (ROC AUC) and the area under the precision-recall curve (PR AUC).Our proposed model significantly outperformed the existing state-of-the-art models with an improved average performance for any AKI prediction from the 3 evaluation perspectives. This model predicted 91% of all AKI episodes using data collected at 24 h after surgery, resulting in a ROC AUC of 0.908 and a PR AUC of 0.898. On average, our model predicted 83% of all AKI episodes that occurred within the different time windows in the 3 evaluation perspectives. The calibration performance of the proposed model was substantially higher than the existing state-of-the-art models.This study showed that a deep learning model can accurately predict postoperative AKI using perioperative time-series data. It has the potential to be integrated into real-time clinical decision support systems to support postoperative care planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜甜映菡完成签到,获得积分10
刚刚
dll完成签到 ,获得积分10
刚刚
如意易形完成签到,获得积分10
刚刚
太叔丹翠发布了新的文献求助10
1秒前
小情绪完成签到 ,获得积分10
3秒前
万能图书馆应助gogogo采纳,获得10
4秒前
4秒前
哈喽发布了新的文献求助10
5秒前
SHUAI完成签到,获得积分10
6秒前
Hello应助zz采纳,获得10
7秒前
HMONEY应助董董采纳,获得10
7秒前
盖世英雄的小超人完成签到,获得积分10
12秒前
13秒前
16秒前
凡平完成签到,获得积分10
17秒前
禾沐发布了新的文献求助10
19秒前
19秒前
NexusExplorer应助第七个星球采纳,获得10
20秒前
如意2023完成签到 ,获得积分10
21秒前
liu完成签到,获得积分10
24秒前
称心寒松发布了新的文献求助10
24秒前
zzjjhh完成签到,获得积分10
26秒前
DLL完成签到 ,获得积分10
26秒前
GAOBIN000发布了新的文献求助10
27秒前
27秒前
30秒前
栗子完成签到,获得积分10
31秒前
搜集达人应助舒适乐儿采纳,获得10
34秒前
xmy发布了新的文献求助10
36秒前
令狐绝音发布了新的文献求助30
40秒前
心动nofear完成签到,获得积分20
41秒前
姜sir完成签到 ,获得积分10
44秒前
44秒前
47秒前
lu完成签到,获得积分10
47秒前
橘白应助涵涵采纳,获得10
49秒前
50秒前
51秒前
猪猪hero应助心动nofear采纳,获得10
51秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741430
求助须知:如何正确求助?哪些是违规求助? 3284094
关于积分的说明 10038212
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646852
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478