ALipSol: An Attention-Driven Mixture-of-Experts Model for Lipophilicity and Solubility Prediction

计算机科学 可解释性 亲脂性 概化理论 稳健性(进化) 人工智能 机器学习 化学 数学 立体化学 生物化学 基因 统计
作者
Jialu Wu,Junmei Wang,Zhenhua Wu,Shengyu Zhang,Yafeng Deng,Yu Kang,Dongsheng Cao,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 5975-5987 被引量:8
标识
DOI:10.1021/acs.jcim.2c01290
摘要

Lipophilicity (logD) and aqueous solubility (logSw) play a central role in drug development. The accurate prediction of these properties remains to be solved due to data scarcity. Current methodologies neglect the intrinsic relationships between physicochemical properties and usually ignore the ionization effects. Here, we propose an attention-driven mixture-of-experts (MoE) model named ALipSol, which explicitly reproduces the hierarchy of task relationships. We adopt the principle of divide-and-conquer by breaking down the complex end point (logD or logSw) into simpler ones (acidic pKa, basic pKa, and logP) and allocating a specific expert network for each subproblem. Subsequently, we implement transfer learning to extract knowledge from related tasks, thus alleviating the dilemma of limited data. Additionally, we substitute the gating network with an attention mechanism to better capture the dynamic task relationships on a per-example basis. We adopt local fine-tuning and consensus prediction to further boost model performance. Extensive evaluation experiments verify the success of the ALipSol model, which achieves RMSE improvement of 8.04%, 2.49%, 8.57%, 12.8%, and 8.60% on the Lipop, ESOL, AqSolDB, external logD, and external logS data sets, respectively, compared with Attentive FP and the state-of-the-art in silico tools. In particular, our model yields more significant advantages (Welch's t-test) for small training data, implying its high robustness and generalizability. The interpretability analysis proves that the atom contributions learned by ALipSol are more reasonable compared with the vanilla Attentive FP, and the substitution effects in benzene derivatives agreed well with empirical constants, revealing the potential of our model to extract useful patterns from data and provide guidance for lead optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助123456采纳,获得10
2秒前
2秒前
Qianbaor68应助太阳也有情绪采纳,获得20
2秒前
3秒前
qq发布了新的文献求助10
3秒前
阔达寒梦发布了新的文献求助10
3秒前
4秒前
朴实的悲完成签到,获得积分20
5秒前
6秒前
6秒前
L996完成签到,获得积分10
7秒前
qq完成签到,获得积分20
8秒前
8秒前
8秒前
zhangzhuopu发布了新的文献求助10
9秒前
小杨完成签到,获得积分10
9秒前
10秒前
冷静发布了新的文献求助10
11秒前
12秒前
dungeon发布了新的文献求助10
12秒前
所所应助笑点低雅琴采纳,获得10
13秒前
惠飞薇完成签到 ,获得积分10
13秒前
温暖傲松完成签到,获得积分10
13秒前
nanishard完成签到 ,获得积分10
14秒前
14秒前
16秒前
Asuna完成签到,获得积分10
17秒前
123456发布了新的文献求助10
17秒前
冷傲山彤完成签到,获得积分10
18秒前
18秒前
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
曾经的海白完成签到,获得积分10
19秒前
所所应助科研通管家采纳,获得10
19秒前
19秒前
机灵柚子应助科研通管家采纳,获得20
19秒前
星辰大海应助科研通管家采纳,获得30
19秒前
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734729
求助须知:如何正确求助?哪些是违规求助? 3278704
关于积分的说明 10010684
捐赠科研通 2995337
什么是DOI,文献DOI怎么找? 1643335
邀请新用户注册赠送积分活动 781114
科研通“疑难数据库(出版商)”最低求助积分说明 749249