Lightweight network learning with Zero-Shot Neural Architecture Search for UAV images

计算机科学 失败 人工智能 目标检测 骨干网 网络体系结构 人工神经网络 分割 编码(集合论) 无人机 特征(语言学) 计算机视觉 深度学习 实时计算 计算机网络 生物 哲学 遗传学 并行计算 集合(抽象数据类型) 语言学 程序设计语言
作者
Fengqin Yao,Shengke Wang,Laihui Ding,Guoqiang Zhong,Leon Bevan Bullock,Zhiwei Xu,Junyu Dong
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110142-110142 被引量:15
标识
DOI:10.1016/j.knosys.2022.110142
摘要

Lightweight Network Architecture is essential for autonomous and intelligent monitoring of Unmanned Aerial Vehicles (UAVs), such as in object detection, image segmentation, and crowd counting applications. The state-of-the-art lightweight network learning based on Neural Architecture Search (NAS) usually costs enormous computation resources. Alternatively, low-performance embedded platforms and high-resolution drone images pose a challenge for lightweight network learning. To alleviate this problem, this paper proposes a new lightweight object detection model, called GhostShuffleNet (GSNet), for UAV images, which is built based on Zero-Shot Neural Architecture Search. This paper also introduces the new components which compose GSNet, namely GhostShuffle units (loosely based on ShuffleNetV2) and the backbone GSmodel-L. Firstly, a lightweight search space is constructed with the GhostShuffle (GS) units to reduce the parameters and floating-point operations (FLOPs). Secondly, the parameters, FLOPs, layers, and memory access cost (MAC) as constraints add to search strategy on a Zero-Shot Neural structure search algorithm, which then searches for an optimal network GSmodel-L. Finally, the optimal GSmodel-L is used as the backbone network and a Ghost-PAN feature fusion module and detection heads are added to complete the design of the lightweight object detection network (GSNet). Extensive experiments are conducted on the VisDrone2019 (14.92%mAP) dataset and the our UAV-OUC-DET (8.38%mAP) dataset demonstrating the efficiency and effectiveness of GSNet. The completed code is available at: https://github.com/yfq-yy/GSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仙女的小可爱完成签到 ,获得积分10
1秒前
1秒前
烧烤发布了新的文献求助10
2秒前
3秒前
藏识完成签到,获得积分10
3秒前
3秒前
3秒前
小徐发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
themanell完成签到,获得积分10
6秒前
8秒前
sfx发布了新的文献求助30
8秒前
9秒前
贱小贱发布了新的文献求助10
9秒前
9秒前
简单初曼完成签到,获得积分10
10秒前
Aira完成签到,获得积分10
10秒前
Wy21完成签到,获得积分10
10秒前
苏格发布了新的文献求助10
10秒前
joejoe完成签到,获得积分10
10秒前
11秒前
Light发布了新的文献求助10
11秒前
13秒前
阿信必发JACS完成签到,获得积分10
13秒前
joejoe发布了新的文献求助10
14秒前
小冯完成签到,获得积分10
14秒前
陈泽宇发布了新的文献求助30
15秒前
未知发布了新的文献求助10
15秒前
17秒前
C.Z.Young发布了新的文献求助10
17秒前
模糊中正应助科研通管家采纳,获得30
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得30
17秒前
895_应助科研通管家采纳,获得20
17秒前
17秒前
斯文败类应助科研通管家采纳,获得10
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390166
求助须知:如何正确求助?哪些是违规求助? 3001921
关于积分的说明 8800750
捐赠科研通 2688466
什么是DOI,文献DOI怎么找? 1472653
科研通“疑难数据库(出版商)”最低求助积分说明 681042
邀请新用户注册赠送积分活动 673707