反射损耗
材料科学
热解
复合材料
多孔性
复合数
吸收(声学)
双金属片
制作
金属
化学工程
冶金
医学
工程类
病理
替代医学
作者
Ruiwen Shu,Xiaohui Li,Jianjun Shi
标识
DOI:10.1016/j.jcis.2022.11.078
摘要
The fabrication of broadband and high-efficiency electromagnetic (EM) wave absorbers remains a huge challenge. Metal-organic framework (MOF) with large porosity and high specific surface area has been considered as a promising precursor for the preparation of novel EM wave absorbers. In this work, porous carbon-based magnetic composites derived from iron zinc bimetallic MOF were prepared by the two-step method of solvothermal reaction and high-temperature pyrolysis. Results of micromorphology analysis demonstrated that the morphology of carbon frameworks evolved from octahedron, polyhedron, sphere to porous sphere-like shape with the increase of pyrolysis temperature. Furthermore, the EM parameters and absorbing properties of obtained composites were regulated through simply changing the pyrolysis temperature. It was noteworthy that the as-prepared Fe3O4/C composite pyrolyzed at 700 °C exhibited the best EM absorption performance. The minimum reflection loss was as large as -60 dB and broad absorption bandwidth reached up to 4 GHz (8-12 GHz, covering the whole X band) at a matching thickness of 2.5 mm and a filler loading ratio of 40 wt%. Furthermore, the maximum absorption bandwidth could be enlarged to 5.4 GHz via reducing the matching thickness to 1.85 mm. Additionally, the probable EM attenuation mechanisms of attained composites were proposed. The results of this study would provide a reference for the preparation of porous carbon-based composites as broadband and high-efficiency EM wave absorbers.
科研通智能强力驱动
Strongly Powered by AbleSci AI