Dual attention guided multiscale neural network trained with curriculum learning for noninvasive prediction of Gleason Grade Group from MRI

人工智能 人工神经网络 模式识别(心理学) 计算机科学 基本事实 机器学习 磁共振成像 医学 放射科
作者
Jisu Hu,Ao Shen,Xiaomeng Qiao,Zong‐Quan Zhou,Xusheng Qian,Yi Zheng,Jie Bao,Ximing Wang,Yakang Dai
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2279-2289 被引量:3
标识
DOI:10.1002/mp.16102
摘要

The Gleason Grade Group (GG) is essential in assessing the malignancy of prostate cancer (PCa) and is typically obtained by invasive biopsy procedures in which sampling errors could lead to inaccurately scored GGs. With the gradually recognized value of bi-parametric magnetic resonance imaging (bpMRI) in PCa, it is beneficial to noninvasively predict GGs from bpMRI for early diagnosis and treatment planning of PCa. However, it is challenging to establish the connection between bpMRI features and GGs.In this study, we propose a dual attention-guided multiscale neural network (DAMS-Net) to predict the 5-scored GG from bpMRI and design a training curriculum to further improve the prediction performance.The proposed DAMS-Net incorporates a feature pyramid network (FPN) to fully extract the multiscale features for lesions of varying sizes and a dual attention module to focus on lesion and surrounding regions while avoiding the influence of irrelevant ones. Furthermore, to enhance the differential ability for lesions with the inter-grade similarity and intra-grade variation in bpMRI, the training process employs a specially designed curriculum based on the differences between the radiological evaluations and the ground truth GGs.Extensive experiments were conducted on a private dataset of 382 patients and the public PROSTATEx-2 dataset. For the private dataset, the experimental results showed that the proposed network performed better than the plain baseline model for GG prediction, achieving a mean quadratic weighted Kappa (Kw ) of 0.4902 and a mean positive predictive value of 0.9098 for predicting clinically significant cancer (PPVGG>1 ). With the application of curriculum learning, the mean Kw and PPVGG>1 further increased to 0.5144 and 0.9118, respectively. For the public dataset, the proposed method achieved state-of-the-art results of 0.5413 Kw and 0.9747 PPVGG>1 .The proposed DAMS-Net trained with curriculum learning can effectively predict GGs from bpMRI, which may assist clinicians in early diagnosis and treatment planning for PCa patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武1发布了新的文献求助10
1秒前
1秒前
传奇3应助晚心采纳,获得10
2秒前
清新的Q发布了新的文献求助10
2秒前
星辰大海应助www采纳,获得10
2秒前
UsihaGuwalgiya发布了新的文献求助100
2秒前
3秒前
5秒前
兰天发布了新的文献求助30
5秒前
张强完成签到,获得积分10
5秒前
乐观小之应助Ly采纳,获得10
7秒前
rim应助郭子仪采纳,获得10
7秒前
善学以致用应助Jackson采纳,获得10
7秒前
bettylei发布了新的文献求助10
9秒前
Jasper应助bofu采纳,获得10
9秒前
9秒前
打打应助midokaori采纳,获得10
10秒前
合适忆山发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
14秒前
15秒前
Beebee24完成签到,获得积分10
15秒前
义气冷菱发布了新的文献求助10
15秒前
15秒前
小小怪发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
17秒前
霸气的煜祺完成签到,获得积分10
18秒前
hxxx完成签到,获得积分20
18秒前
joy发布了新的文献求助10
19秒前
Peggy发布了新的文献求助10
19秒前
义气冷菱完成签到,获得积分20
21秒前
Booty发布了新的文献求助40
21秒前
21秒前
hxxx发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105