Dual attention guided multiscale neural network trained with curriculum learning for noninvasive prediction of Gleason Grade Group from MRI

人工智能 人工神经网络 模式识别(心理学) 计算机科学 基本事实 机器学习 磁共振成像 医学 放射科
作者
Jisu Hu,Ao Shen,Xiaomeng Qiao,Zong‐Quan Zhou,Xusheng Qian,Yi Zheng,Jie Bao,Ximing Wang,Yakang Dai
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2279-2289 被引量:3
标识
DOI:10.1002/mp.16102
摘要

The Gleason Grade Group (GG) is essential in assessing the malignancy of prostate cancer (PCa) and is typically obtained by invasive biopsy procedures in which sampling errors could lead to inaccurately scored GGs. With the gradually recognized value of bi-parametric magnetic resonance imaging (bpMRI) in PCa, it is beneficial to noninvasively predict GGs from bpMRI for early diagnosis and treatment planning of PCa. However, it is challenging to establish the connection between bpMRI features and GGs.In this study, we propose a dual attention-guided multiscale neural network (DAMS-Net) to predict the 5-scored GG from bpMRI and design a training curriculum to further improve the prediction performance.The proposed DAMS-Net incorporates a feature pyramid network (FPN) to fully extract the multiscale features for lesions of varying sizes and a dual attention module to focus on lesion and surrounding regions while avoiding the influence of irrelevant ones. Furthermore, to enhance the differential ability for lesions with the inter-grade similarity and intra-grade variation in bpMRI, the training process employs a specially designed curriculum based on the differences between the radiological evaluations and the ground truth GGs.Extensive experiments were conducted on a private dataset of 382 patients and the public PROSTATEx-2 dataset. For the private dataset, the experimental results showed that the proposed network performed better than the plain baseline model for GG prediction, achieving a mean quadratic weighted Kappa (Kw ) of 0.4902 and a mean positive predictive value of 0.9098 for predicting clinically significant cancer (PPVGG>1 ). With the application of curriculum learning, the mean Kw and PPVGG>1 further increased to 0.5144 and 0.9118, respectively. For the public dataset, the proposed method achieved state-of-the-art results of 0.5413 Kw and 0.9747 PPVGG>1 .The proposed DAMS-Net trained with curriculum learning can effectively predict GGs from bpMRI, which may assist clinicians in early diagnosis and treatment planning for PCa patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
callmecjh完成签到,获得积分10
刚刚
2秒前
隐形曼青应助AlienU采纳,获得10
2秒前
3秒前
悲伤半导体应助卖粥的果采纳,获得10
3秒前
李爱国应助爱听歌笑寒采纳,获得10
3秒前
rosalieshi应助乐乐乐乐乐乐采纳,获得30
4秒前
Owen应助乐乐乐乐乐乐采纳,获得20
4秒前
丘比特应助乐乐乐乐乐乐采纳,获得10
4秒前
4秒前
英姑应助乐乐乐乐乐乐采纳,获得10
5秒前
5秒前
传奇3应助乐乐乐乐乐乐采纳,获得10
5秒前
小马甲应助乐乐乐乐乐乐采纳,获得10
5秒前
无花果应助乐乐乐乐乐乐采纳,获得10
5秒前
田様应助乐乐乐乐乐乐采纳,获得10
5秒前
5秒前
Ava应助稳重的小霜采纳,获得10
5秒前
6秒前
闪闪映易完成签到,获得积分10
6秒前
7秒前
8秒前
852应助xixiz1024采纳,获得10
8秒前
Abner完成签到,获得积分20
8秒前
yuyu完成签到,获得积分10
9秒前
无私石头完成签到,获得积分10
10秒前
王志鹏发布了新的文献求助10
10秒前
11秒前
无语啦发布了新的文献求助10
11秒前
Coco发布了新的文献求助20
12秒前
笨笨石头应助fifteen采纳,获得10
12秒前
浅夏完成签到 ,获得积分10
12秒前
格格巫完成签到 ,获得积分10
13秒前
13秒前
14秒前
123pc驳回了打打应助
15秒前
NW18完成签到,获得积分10
16秒前
Drpei发布了新的文献求助10
16秒前
17秒前
孤岛飞鹰发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154374
求助须知:如何正确求助?哪些是违规求助? 2805268
关于积分的说明 7864039
捐赠科研通 2463452
什么是DOI,文献DOI怎么找? 1311340
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821