清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

(Invited) Ester and Carbonate-Based Low Temperature Electrolytes for Operation of Lithium-Ion Batteries in Extreme Environments for NASA Missions

火星探测计划 碳酸乙烯酯 电解质 航空航天工程 材料科学 土星 环境科学 储能 锂(药物) 天体生物学 功率(物理) 行星 工程类 物理 内分泌学 医学 量子力学 天体物理学 电极
作者
Marshall C. Smart,F. C. Krause,John‐Paul Jones
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (5): 575-575
标识
DOI:10.1149/ma2022-025575mtgabs
摘要

NASA continues to have an interest in developing high specific energy and high power rechargeable batteries that can operate well over a wide temperature range. Potential applications that could be enabled or enhanced by such technology include: (i) future Mars and Lunar landers, (ii) future Mars and Lunar rovers, (iii) small robotic missions, and (iv) future planetary aerial vehicles, where high specific energy, high power and wide operating temperature range is desired. Future missions to some of the distant icy moons of Jupiter and Saturn are also anticipated to benefit from improved ultra-low temperature rechargeable batteries with high specific energy. 1 A number of terrestrial applications, including automotive and aviation Li-ion batteries, also benefit from having wide temperature range capability. To meet these needs, the Electrochemical Research, Technology, and Engineering Group at the Jet Propulsion Laboratory (JPL) has developed a number of low temperature Li-ion electrolytes utilizing various approaches. Broadly speaking, the performance targets of this work are to provide operation over the temperature range of +60 o C to -60 o C (delivering over 100 Wh/kg at -40 o C at reasonable rates). This paper will provide an overview of the low temperature electrolyte development activities that have taken place at JPL, with a focus on enabling ultra-low temperature operation for extreme environments. The electrolytes evaluated included blends which contain elements of various approaches, including (i) the use of ester co-solvents, (ii) low ethylene carbonate content-based blends, (iii) the use of electrolyte additives, and (iv) the use of mixed lithium electrolyte salts. Experimental studies were performed utilizing three-electrode cells to determine the influence that the electrolyte type has upon the electrode kinetics as a function of temperature. A number of electrochemical techniques were employed to study these cells, including Electrochemical Impedance Spectroscopy (EIS), Tafel polarization, and linear micro-polarization. Improved low temperature capability has been demonstrated in small and large capacity prototype cells with a number of chemistries (i.e., NCO, NCA, NMC, LCO and LFP-based chemistries), including the ability to deliver high specific energy down to -60 o C, good charge acceptance at low temperature, and high-power capability at -40 o C. Prototype cells incorporating JPL developed electrolytes were obtained from a number of vendors, including (i) Eagle Pitcher Technologies-Yardney Division, (ii) Enersys/Quallion, LLC, (iii) E-One Moli Energy Ltd., (iv) Saft America, and (iv) Navitas/A123. Emphasis was devoted to establishing the charge acceptance characteristics of the cells at very low temperatures, especially below -20 o C. Given that lithium plating when charging at low temperatures is a known degradation mode of Li-ion cells in general, attention was focused upon characterizing the conditions in which its likelihood may be more pronounced, determining the influence of electrolyte type, and attempting to detect its occurrence indirectly. Early generations of electrolytes have been utilized in a number of NASA missions, including the 2003 Mars Exploration Rover, 2007 Phoenix Lander, 2011 Mars Science Laboratory (MSL) Curiosity Rover, 2018 Mars InSight Lander, and a JPL/CSUN CubeSat. 1-5 Previous work has also targeted improved low temperature performance of Li-ion cells for automotive applications. Current work is focused primarily upon providing higher specific energy coupled with good power characteristics at very low temperatures. Studies have also been performed demonstrating operational capability down to -90 o C in some systems, and survival capability to temperatures as low as -135 o C. ACKNOWLEDGEMENT The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The information in this document is pre-decisional and is provided for planning and discussion only. REFERENCES M. C. Smart, B. V. Ratnakumar, R. C. Ewell, S. Surampudi, F. Puglia, and R. Gitzendanner, Electrochimica Acta , 268 , 27-40 (2018). M. C. Smart, D. Muthulingam, M. E. Lisano, S. F. Dawson, R. B. Shaw, B. T. White, A. Buonanno, C. Deroy, and R. Gitzendanner, 236th Meeting of the Electrochemical Society (ECS), Atlanta, Georgia, October 15, 2019. M. C. Smart, F. C. Krause, and J. -P. Jones, CREB Bi-Annual Meeting, University of Maryland, December 10, 2021. K. B. Chin, G. B. Bolotin, M. C. Smart, S. Katz, J. A. Flynn, N. K. Palmer, E. J. Brandon, and W. C. West, IEEE A&E Systems Magazine, 36 (5), 24-36 (2021). M. C. Smart, B. V. Ratnakumar, F. Charlie Krause, William C. West and Erik J. Brandon, 2021 Space Power Workshop (Virtual), Pasadena, CA, April 19, 2021. M. C. Smart, F. C. Krause, J. -P. Jones, C. L. Fuller, J. A. Schwartz, and B. V. Ratnakumar, 2018 Conference on Advanced Power Systems for Deep Space Exploration, Pasadena, CA, October 22-24, 2018.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜猪完成签到,获得积分10
6秒前
dream完成签到 ,获得积分10
8秒前
14秒前
琳io完成签到 ,获得积分10
35秒前
laohei94_6完成签到 ,获得积分10
37秒前
51秒前
无花果应助紫色奶萨采纳,获得10
58秒前
1分钟前
科研通AI2S应助arsenal采纳,获得10
1分钟前
狂野宛凝发布了新的文献求助10
1分钟前
1分钟前
光亮静槐完成签到 ,获得积分10
1分钟前
Echopotter发布了新的文献求助10
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Echopotter完成签到,获得积分10
1分钟前
1分钟前
Jenny发布了新的文献求助30
1分钟前
liwen发布了新的文献求助100
1分钟前
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
斯提亚拉发布了新的文献求助10
1分钟前
牛黄完成签到 ,获得积分10
1分钟前
Orange应助科研通管家采纳,获得20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
ceeray23发布了新的文献求助30
2分钟前
2分钟前
袁青寒发布了新的文献求助10
2分钟前
zxq完成签到 ,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
lucky完成签到 ,获得积分10
3分钟前
绿色猫猫头完成签到 ,获得积分10
3分钟前
CodeCraft应助斯提亚拉采纳,获得10
3分钟前
wrl2023完成签到,获得积分10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
Qing完成签到 ,获得积分10
4分钟前
nextconnie完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503