(Invited) Ester and Carbonate-Based Low Temperature Electrolytes for Operation of Lithium-Ion Batteries in Extreme Environments for NASA Missions

火星探测计划 碳酸乙烯酯 电解质 航空航天工程 材料科学 土星 环境科学 储能 锂(药物) 天体生物学 功率(物理) 行星 工程类 物理 医学 电极 量子力学 天体物理学 内分泌学
作者
Marshall C. Smart,F. C. Krause,John‐Paul Jones
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (5): 575-575
标识
DOI:10.1149/ma2022-025575mtgabs
摘要

NASA continues to have an interest in developing high specific energy and high power rechargeable batteries that can operate well over a wide temperature range. Potential applications that could be enabled or enhanced by such technology include: (i) future Mars and Lunar landers, (ii) future Mars and Lunar rovers, (iii) small robotic missions, and (iv) future planetary aerial vehicles, where high specific energy, high power and wide operating temperature range is desired. Future missions to some of the distant icy moons of Jupiter and Saturn are also anticipated to benefit from improved ultra-low temperature rechargeable batteries with high specific energy. 1 A number of terrestrial applications, including automotive and aviation Li-ion batteries, also benefit from having wide temperature range capability. To meet these needs, the Electrochemical Research, Technology, and Engineering Group at the Jet Propulsion Laboratory (JPL) has developed a number of low temperature Li-ion electrolytes utilizing various approaches. Broadly speaking, the performance targets of this work are to provide operation over the temperature range of +60 o C to -60 o C (delivering over 100 Wh/kg at -40 o C at reasonable rates). This paper will provide an overview of the low temperature electrolyte development activities that have taken place at JPL, with a focus on enabling ultra-low temperature operation for extreme environments. The electrolytes evaluated included blends which contain elements of various approaches, including (i) the use of ester co-solvents, (ii) low ethylene carbonate content-based blends, (iii) the use of electrolyte additives, and (iv) the use of mixed lithium electrolyte salts. Experimental studies were performed utilizing three-electrode cells to determine the influence that the electrolyte type has upon the electrode kinetics as a function of temperature. A number of electrochemical techniques were employed to study these cells, including Electrochemical Impedance Spectroscopy (EIS), Tafel polarization, and linear micro-polarization. Improved low temperature capability has been demonstrated in small and large capacity prototype cells with a number of chemistries (i.e., NCO, NCA, NMC, LCO and LFP-based chemistries), including the ability to deliver high specific energy down to -60 o C, good charge acceptance at low temperature, and high-power capability at -40 o C. Prototype cells incorporating JPL developed electrolytes were obtained from a number of vendors, including (i) Eagle Pitcher Technologies-Yardney Division, (ii) Enersys/Quallion, LLC, (iii) E-One Moli Energy Ltd., (iv) Saft America, and (iv) Navitas/A123. Emphasis was devoted to establishing the charge acceptance characteristics of the cells at very low temperatures, especially below -20 o C. Given that lithium plating when charging at low temperatures is a known degradation mode of Li-ion cells in general, attention was focused upon characterizing the conditions in which its likelihood may be more pronounced, determining the influence of electrolyte type, and attempting to detect its occurrence indirectly. Early generations of electrolytes have been utilized in a number of NASA missions, including the 2003 Mars Exploration Rover, 2007 Phoenix Lander, 2011 Mars Science Laboratory (MSL) Curiosity Rover, 2018 Mars InSight Lander, and a JPL/CSUN CubeSat. 1-5 Previous work has also targeted improved low temperature performance of Li-ion cells for automotive applications. Current work is focused primarily upon providing higher specific energy coupled with good power characteristics at very low temperatures. Studies have also been performed demonstrating operational capability down to -90 o C in some systems, and survival capability to temperatures as low as -135 o C. ACKNOWLEDGEMENT The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The information in this document is pre-decisional and is provided for planning and discussion only. REFERENCES M. C. Smart, B. V. Ratnakumar, R. C. Ewell, S. Surampudi, F. Puglia, and R. Gitzendanner, Electrochimica Acta , 268 , 27-40 (2018). M. C. Smart, D. Muthulingam, M. E. Lisano, S. F. Dawson, R. B. Shaw, B. T. White, A. Buonanno, C. Deroy, and R. Gitzendanner, 236th Meeting of the Electrochemical Society (ECS), Atlanta, Georgia, October 15, 2019. M. C. Smart, F. C. Krause, and J. -P. Jones, CREB Bi-Annual Meeting, University of Maryland, December 10, 2021. K. B. Chin, G. B. Bolotin, M. C. Smart, S. Katz, J. A. Flynn, N. K. Palmer, E. J. Brandon, and W. C. West, IEEE A&E Systems Magazine, 36 (5), 24-36 (2021). M. C. Smart, B. V. Ratnakumar, F. Charlie Krause, William C. West and Erik J. Brandon, 2021 Space Power Workshop (Virtual), Pasadena, CA, April 19, 2021. M. C. Smart, F. C. Krause, J. -P. Jones, C. L. Fuller, J. A. Schwartz, and B. V. Ratnakumar, 2018 Conference on Advanced Power Systems for Deep Space Exploration, Pasadena, CA, October 22-24, 2018.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_EZ1oWL发布了新的文献求助30
1秒前
积极若云发布了新的文献求助10
1秒前
1秒前
zg完成签到,获得积分10
2秒前
QQ发布了新的文献求助10
3秒前
垃圾的摆设完成签到,获得积分10
3秒前
易达完成签到,获得积分10
4秒前
典雅的寄凡完成签到 ,获得积分10
5秒前
6秒前
6秒前
啊aa发布了新的文献求助10
7秒前
8秒前
8秒前
湘君完成签到,获得积分0
8秒前
9秒前
dxs完成签到 ,获得积分10
9秒前
甜甜穆完成签到,获得积分10
10秒前
逸晨发布了新的文献求助10
11秒前
科研打工人完成签到,获得积分10
12秒前
柳宝雯完成签到,获得积分10
12秒前
啊aa完成签到,获得积分10
12秒前
宋宋发布了新的文献求助10
12秒前
科研通AI2S应助动人的蝴蝶采纳,获得10
13秒前
祝英台完成签到 ,获得积分10
13秒前
搜集达人应助孤巷的猫采纳,获得10
14秒前
学术丁真发布了新的文献求助10
14秒前
14秒前
dogontree发布了新的文献求助10
14秒前
qiuyue发布了新的文献求助10
15秒前
16秒前
Alanni发布了新的文献求助10
16秒前
光亮语梦完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
麻花精发布了新的文献求助10
17秒前
17秒前
优美的梦菲完成签到,获得积分10
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146022
求助须知:如何正确求助?哪些是违规求助? 2797382
关于积分的说明 7824093
捐赠科研通 2453743
什么是DOI,文献DOI怎么找? 1305846
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491