Development of a Solid-State Ta-Doped Lithium Lanthanum Zirconium Oxide Electrolyte for All-Solid-State Lithium Batteries (ASSLBs)

材料科学 电解质 锂(药物) 烧结 阳极 离子电导率 阴极 快离子导体 氧化物 磷酸钒锂电池 化学工程 电极 陶瓷 无机化学 冶金 化学 物理化学 医学 工程类 内分泌学
作者
Dillip K. Panda,Stephen E. Creager,Rajendra K. Bordia
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (4): 496-496
标识
DOI:10.1149/ma2022-024496mtgabs
摘要

Large, high-power batteries are necessary for electric vehicles. The safety of batteries is also crucial, as damaged batteries should not be combustible. Moreover, in some cases batteries need to operate a modestly high temperatures in the range of 100 - 150 0 C. All-solid-state lithium batteries (ASSLBs) can handle these requirements with ceramic electrolytes, lithium intercalation cathodes, and lithium metal anodes. Although ASSLBs using variations on this material set have been demonstrated, they tend to have low power, in part because of low ionic conductivity, as well as low rates of interfacial reaction between electrodes and electrolytes. Various strategies are being investigated to address the challenge of low power including operating at elevated temperatures, using doped electrolytes, increasing the contact area between the electrodes and the electrolyte, and through engineering of the interfaces between electrodes and electrolytes. Using tape casting followed by sintering, we are producing thin (~20µm) and dense Ta-doped Lithium Lanthanum Zirconium Oxide (LLZTO) films, and also LLZTO pellets. The challenge of Li-loss during sintering has been addressed by using suitable sintering aids and sacrificial Li source. We have characterized LLZTO films and pellets using techniques such as XRD, SEM, and SEM EXA. The electrochemical properties of the LLZTO electrolyte including ionic conductivity have been measured. This is the first step in the creation of a full cell with engineered electrodes and interfaces. An analytical model has been developed to examine the effect of thickness of anode, cathode, and current collector on energy density.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得30
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
一只猪完成签到,获得积分10
刚刚
昏睡的蟠桃应助科研通管家采纳,获得150
刚刚
水水应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
王q应助科研通管家采纳,获得50
1秒前
1秒前
飞跃云栖竹径的幸福地精完成签到,获得积分10
2秒前
3秒前
小马甲应助deanna采纳,获得10
3秒前
饭团0814发布了新的文献求助10
4秒前
4秒前
科研通AI5应助andy采纳,获得10
5秒前
一只猪发布了新的文献求助10
5秒前
6秒前
这丁发布了新的文献求助10
6秒前
6秒前
xiaobai完成签到,获得积分20
9秒前
标致尔蓝发布了新的文献求助10
9秒前
9秒前
rofsc发布了新的文献求助10
11秒前
李爱国应助hao123采纳,获得10
11秒前
walker发布了新的文献求助10
11秒前
田里的小白菜完成签到,获得积分10
11秒前
LAVINE完成签到 ,获得积分10
12秒前
小二郎应助玻璃杯采纳,获得10
13秒前
韦俊豪完成签到,获得积分10
13秒前
曾经问雁发布了新的文献求助10
13秒前
这丁完成签到,获得积分10
14秒前
深情安青应助JPH1990采纳,获得30
14秒前
柚子完成签到,获得积分10
15秒前
小小发布了新的文献求助20
15秒前
15秒前
xiaobai发布了新的文献求助20
15秒前
Swiftie完成签到 ,获得积分10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726798
求助须知:如何正确求助?哪些是违规求助? 3271808
关于积分的说明 9973811
捐赠科研通 2987155
什么是DOI,文献DOI怎么找? 1638750
邀请新用户注册赠送积分活动 778259
科研通“疑难数据库(出版商)”最低求助积分说明 747549