Development of a Solid-State Ta-Doped Lithium Lanthanum Zirconium Oxide Electrolyte for All-Solid-State Lithium Batteries (ASSLBs)

材料科学 电解质 锂(药物) 烧结 阳极 离子电导率 阴极 快离子导体 氧化物 磷酸钒锂电池 化学工程 电极 陶瓷 无机化学 冶金 化学 物理化学 内分泌学 工程类 医学
作者
Dillip K. Panda,Stephen E. Creager,Rajendra K. Bordia
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (4): 496-496
标识
DOI:10.1149/ma2022-024496mtgabs
摘要

Large, high-power batteries are necessary for electric vehicles. The safety of batteries is also crucial, as damaged batteries should not be combustible. Moreover, in some cases batteries need to operate a modestly high temperatures in the range of 100 - 150 0 C. All-solid-state lithium batteries (ASSLBs) can handle these requirements with ceramic electrolytes, lithium intercalation cathodes, and lithium metal anodes. Although ASSLBs using variations on this material set have been demonstrated, they tend to have low power, in part because of low ionic conductivity, as well as low rates of interfacial reaction between electrodes and electrolytes. Various strategies are being investigated to address the challenge of low power including operating at elevated temperatures, using doped electrolytes, increasing the contact area between the electrodes and the electrolyte, and through engineering of the interfaces between electrodes and electrolytes. Using tape casting followed by sintering, we are producing thin (~20µm) and dense Ta-doped Lithium Lanthanum Zirconium Oxide (LLZTO) films, and also LLZTO pellets. The challenge of Li-loss during sintering has been addressed by using suitable sintering aids and sacrificial Li source. We have characterized LLZTO films and pellets using techniques such as XRD, SEM, and SEM EXA. The electrochemical properties of the LLZTO electrolyte including ionic conductivity have been measured. This is the first step in the creation of a full cell with engineered electrodes and interfaces. An analytical model has been developed to examine the effect of thickness of anode, cathode, and current collector on energy density.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助JV采纳,获得10
刚刚
刚刚
聪明的难摧完成签到 ,获得积分10
刚刚
刚刚
1秒前
善学以致用应助远航采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
夜紫依寒完成签到,获得积分10
3秒前
李健的小迷弟应助Sirila采纳,获得10
5秒前
6秒前
7秒前
cryjslong发布了新的文献求助10
7秒前
科研通AI5应助风清扬采纳,获得10
7秒前
10秒前
Coco发布了新的文献求助10
11秒前
13秒前
汉堡包应助风清扬采纳,获得10
15秒前
15秒前
爆米花应助ding采纳,获得10
15秒前
16秒前
易萧发布了新的文献求助10
17秒前
Jennifer发布了新的文献求助10
17秒前
17秒前
李丽冰发布了新的文献求助10
20秒前
希望天下0贩的0应助米粒采纳,获得10
22秒前
23秒前
23秒前
长安完成签到,获得积分10
26秒前
小二郎应助裘文献采纳,获得10
27秒前
muyi完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
易萧完成签到,获得积分10
30秒前
机灵千萍完成签到,获得积分10
31秒前
32秒前
为电场完成签到,获得积分10
33秒前
李庆瑞完成签到,获得积分10
34秒前
朱艺文完成签到,获得积分10
35秒前
ZZR发布了新的文献求助10
36秒前
Liu完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906489
求助须知:如何正确求助?哪些是违规求助? 4184067
关于积分的说明 12992482
捐赠科研通 3950307
什么是DOI,文献DOI怎么找? 2166418
邀请新用户注册赠送积分活动 1185015
关于科研通互助平台的介绍 1091364