Cost-Effective Social Media Influencer Marketing

影响力营销 社会化媒体 成对比较 计算机科学 营销 业务 关系营销 市场营销管理 人工智能 万维网
作者
Xiao Han,Leye Wang,Weiguo Fan
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 138-157 被引量:28
标识
DOI:10.1287/ijoc.2022.1246
摘要

It is becoming more and more promising that marketers hire influencers to launch campaigns for spreading items (e.g., articles or videos about products) over social media platforms. Such social media influencer marketing may generate tremendous utility if the influencers persuade their followers to adopt the recommended items. This could further spur extensive spontaneous item propagation on social media. Although prior studies mainly focus on influencer-selection strategies by the influencers’ traits, marketers with a number of items are often requested to determine both influencers and marketing items. The appropriateness between influencers and items is critical, but rarely considered in prior influencer-identification methods. We thus formulate and solve a novel cost-effective social media influencer marketing problem to maximize marketers’ utility by selecting appropriate pairwise combinations of influencers and items (i.e., item-influencer pairs). In particular, we first model utility functions and propose a simulation-based method to estimate the appropriateness of arbitrarily given item-influencer pairs by their potential utility. With the estimated utility, we devise an algorithm to iteratively select appropriate item-influencer pairs under various realistic conditions, including marketers’ budget, influencers’ payments, item-user fitness, social propagation, and influencers’ marketing slots. We theoretically prove that the marketing utility achieved by our method is near-optimal. We also conduct extensive empirical experiments with three real-world data sets to verify the superiority of our method in terms of cost-effectiveness and computational efficiency. Lastly, we discuss insightful theoretical and practical implications. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This study was partially funded by the National Natural Science Foundation of China [Grants 72071125, 72031001, and 61972008]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1246 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助包容的奇异果采纳,获得10
刚刚
茉莉是个饱饱完成签到,获得积分10
1秒前
FashionBoy应助不吃了采纳,获得10
2秒前
Ice完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
吕敬瑶完成签到,获得积分10
4秒前
5秒前
stone完成签到,获得积分10
5秒前
chinjaneking发布了新的文献求助10
7秒前
7秒前
7秒前
华仔应助yxc采纳,获得10
7秒前
8秒前
Hello应助YangLi采纳,获得10
8秒前
SciGPT应助yun采纳,获得10
8秒前
YS发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
思源应助Mc_Fan采纳,获得10
13秒前
zbm完成签到 ,获得积分10
13秒前
沉默的钵钵鸡完成签到,获得积分10
13秒前
15秒前
17秒前
甜心辣妹关注了科研通微信公众号
17秒前
red发布了新的文献求助10
18秒前
乐乐应助科学家采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
不吃了发布了新的文献求助10
19秒前
向上的小马完成签到,获得积分10
20秒前
20秒前
yun发布了新的文献求助10
21秒前
night发布了新的文献求助10
22秒前
23秒前
zrl发布了新的文献求助10
24秒前
24秒前
饼干发布了新的文献求助10
25秒前
英吉利25发布了新的文献求助10
25秒前
25秒前
椿椿完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858