Cost-Effective Social Media Influencer Marketing

影响力营销 社会化媒体 成对比较 计算机科学 营销 业务 关系营销 市场营销管理 人工智能 万维网
作者
Xiao Han,Leye Wang,Weiguo Fan
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 138-157 被引量:19
标识
DOI:10.1287/ijoc.2022.1246
摘要

It is becoming more and more promising that marketers hire influencers to launch campaigns for spreading items (e.g., articles or videos about products) over social media platforms. Such social media influencer marketing may generate tremendous utility if the influencers persuade their followers to adopt the recommended items. This could further spur extensive spontaneous item propagation on social media. Although prior studies mainly focus on influencer-selection strategies by the influencers’ traits, marketers with a number of items are often requested to determine both influencers and marketing items. The appropriateness between influencers and items is critical, but rarely considered in prior influencer-identification methods. We thus formulate and solve a novel cost-effective social media influencer marketing problem to maximize marketers’ utility by selecting appropriate pairwise combinations of influencers and items (i.e., item-influencer pairs). In particular, we first model utility functions and propose a simulation-based method to estimate the appropriateness of arbitrarily given item-influencer pairs by their potential utility. With the estimated utility, we devise an algorithm to iteratively select appropriate item-influencer pairs under various realistic conditions, including marketers’ budget, influencers’ payments, item-user fitness, social propagation, and influencers’ marketing slots. We theoretically prove that the marketing utility achieved by our method is near-optimal. We also conduct extensive empirical experiments with three real-world data sets to verify the superiority of our method in terms of cost-effectiveness and computational efficiency. Lastly, we discuss insightful theoretical and practical implications. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This study was partially funded by the National Natural Science Foundation of China [Grants 72071125, 72031001, and 61972008]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1246 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ballball233完成签到 ,获得积分10
刚刚
刚刚
liuliu完成签到,获得积分10
刚刚
1秒前
zhangDL完成签到,获得积分10
2秒前
爆米花应助CoNor采纳,获得10
2秒前
003完成签到,获得积分10
2秒前
哈哈哈开开心心完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
深情安青应助bonnie采纳,获得10
6秒前
亮不卡发布了新的文献求助10
6秒前
wise111发布了新的文献求助10
8秒前
思源应助张昊采纳,获得10
9秒前
9秒前
10秒前
Eternal发布了新的文献求助10
11秒前
石友瑶发布了新的文献求助10
11秒前
11秒前
研友_Z6Qrbn发布了新的文献求助10
11秒前
11秒前
11秒前
科研通AI5应助chem采纳,获得10
11秒前
科研通AI5应助Guozixin采纳,获得30
11秒前
12秒前
liuliu发布了新的文献求助10
13秒前
是danoo完成签到,获得积分10
15秒前
002完成签到,获得积分10
15秒前
orixero应助llllda采纳,获得10
15秒前
陈蕴兮发布了新的文献求助10
15秒前
Xie发布了新的文献求助10
16秒前
jiemo_111完成签到,获得积分10
17秒前
Criminology34应助儒雅熊猫采纳,获得10
17秒前
17秒前
ceasar发布了新的文献求助10
18秒前
18秒前
lyj完成签到 ,获得积分10
19秒前
Hello应助研友_ZbP41L采纳,获得10
20秒前
神勇虾头发布了新的文献求助10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920