Cost-Effective Social Media Influencer Marketing

影响力营销 社会化媒体 成对比较 计算机科学 营销 业务 关系营销 市场营销管理 人工智能 万维网
作者
Xiao Han,Leye Wang,Weiguo Fan
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 138-157 被引量:14
标识
DOI:10.1287/ijoc.2022.1246
摘要

It is becoming more and more promising that marketers hire influencers to launch campaigns for spreading items (e.g., articles or videos about products) over social media platforms. Such social media influencer marketing may generate tremendous utility if the influencers persuade their followers to adopt the recommended items. This could further spur extensive spontaneous item propagation on social media. Although prior studies mainly focus on influencer-selection strategies by the influencers’ traits, marketers with a number of items are often requested to determine both influencers and marketing items. The appropriateness between influencers and items is critical, but rarely considered in prior influencer-identification methods. We thus formulate and solve a novel cost-effective social media influencer marketing problem to maximize marketers’ utility by selecting appropriate pairwise combinations of influencers and items (i.e., item-influencer pairs). In particular, we first model utility functions and propose a simulation-based method to estimate the appropriateness of arbitrarily given item-influencer pairs by their potential utility. With the estimated utility, we devise an algorithm to iteratively select appropriate item-influencer pairs under various realistic conditions, including marketers’ budget, influencers’ payments, item-user fitness, social propagation, and influencers’ marketing slots. We theoretically prove that the marketing utility achieved by our method is near-optimal. We also conduct extensive empirical experiments with three real-world data sets to verify the superiority of our method in terms of cost-effectiveness and computational efficiency. Lastly, we discuss insightful theoretical and practical implications. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This study was partially funded by the National Natural Science Foundation of China [Grants 72071125, 72031001, and 61972008]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1246 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助April采纳,获得10
1秒前
赵小天完成签到,获得积分10
1秒前
上官若男应助坚强的初夏采纳,获得10
1秒前
ww发布了新的文献求助10
2秒前
猪猪侠发布了新的文献求助10
3秒前
上官若男应助feng采纳,获得10
3秒前
FashionBoy应助明知欢喜采纳,获得10
3秒前
安静的瑾瑜完成签到 ,获得积分10
3秒前
宣以晴完成签到,获得积分10
4秒前
洋洋发布了新的文献求助10
5秒前
我是老大应助upsoar采纳,获得10
5秒前
不懈奋进应助Ay采纳,获得30
5秒前
retortt完成签到,获得积分10
6秒前
沧笙踏歌应助123采纳,获得10
7秒前
科研通AI2S应助简单的烤鸡采纳,获得10
7秒前
ryq327完成签到 ,获得积分10
7秒前
8秒前
万能图书馆应助猪猪侠采纳,获得10
8秒前
8秒前
11秒前
杰尼乾乾完成签到 ,获得积分10
11秒前
一定accept完成签到 ,获得积分10
11秒前
11秒前
Letter发布了新的文献求助10
12秒前
12秒前
Joker_Li完成签到,获得积分10
14秒前
uuu完成签到,获得积分20
14秒前
烟花应助tdtk采纳,获得10
14秒前
15秒前
明知欢喜发布了新的文献求助10
15秒前
nina应助qiang采纳,获得10
15秒前
SciGPT应助yrt采纳,获得10
16秒前
小肆完成签到 ,获得积分10
16秒前
16秒前
Rondab应助嬉笑采纳,获得10
16秒前
大个应助Letter采纳,获得10
16秒前
uuu发布了新的文献求助10
17秒前
洋洋发布了新的文献求助10
17秒前
upsoar发布了新的文献求助10
17秒前
天天快乐应助大医仁心采纳,获得20
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528